
SMART CONTRACT AUDIT

Umami GLP Vaults

Report 2 of 2

June 16th 2023 | v.	1.2

score

95

PASS
Zokyo Security has concluded that

this smart contract passes security

qualifications to be listed on digital

asset exchanges.

Security Audit Score

1

Umami GLP Vaults Smart Contract Audit

This document outlines the overall security of the Umami GLP Vaults smart contracts
evaluated by the Zokyo Security team.

Technical Summary

The scope of this audit was to analyze and document the Umami GLP Vaults smart contracts
codebase for quality, security, and correctness.

There were 0 critical issues found during the audit. (See Complete Analysis)

Contract Status

low Risk

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contracts but rather limited to an assessment of the logic and implementation. In order
to ensure a secure contract that can withstand the Ethereum network’s fast-paced and
rapidly changing environment, we recommend that the Umami GLP Vaults team put in place
a bug bounty program to encourage further active analysis of the smart contracts.

https://docs.google.com/document/d/16EQYXxgdYoeM8N2UuNIyq-yivmkFhmW5vbQduyDUhFo/edit#heading=h.y413rcm4r1gs

2

Umami GLP Vaults Smart Contract Audit

7Complete Analysis

5Executive Summary

6Structure and Organization of the Document

3Auditing Strategy and Techniques Applied

Table of Contents

Auditing Strategy and Techniques Applied

3

Umami GLP Vaults Smart Contract Audit

Within the scope of this audit, the team of auditors reviewed the following contract(s):

The source code of the smart contract was taken from the Umami GLP Vaults repository:  
https://github.com/UmamiDAO/V2-Vaults

Last commit - 5d5623674575f5c35608e4da9b19b1f904ae6654

BaseHandler.sol

GlpHandler.sol

BasePositionManager.sol

GmxPositionManager.sol

PositionManagerRouter.sol

BaseSwapManager.sol

GmxSwapManager.sol

OneInchSwapManager.sol

GlpPricing.sol

NettingMath.sol

ShareMath.sol

SwapLibrary.sol

VaultLifecycle.sol

VaultStorage.sol

Multicall.sol

PositionMath.sol

Solarray.sol

TimeoutChecker.sol

VaultMath.sol

BaseWrapper.sol

ChainlinkWrapper.sol

UmamiPriceFeed.sol

GlpRebalanceRouter.sol

NettedPositionTracker.sol

VaultFeeManager.sol

AggregateVaultStorage.sol

AggregateVault.sol

AssetVault.sol

AavePositionManager

AaveIsolatedPositionAccount

AaveUtils

GmxAccountManager

GmxPositionManagerStorage

GmxPositionManagerUtils

OdosSwapManger

CorrelationRegistry

https://github.com/UmamiDAO/V2-Vaults
https://github.com/UmamiDAO/V2-Vaults/commit/5d5623674575f5c35608e4da9b19b1f904ae6654

01 Due diligence in assessing the overall
code quality of the codebase.

02 Cross-comparison with other, similar
smart contracts by industry leaders.

03 Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;

The documentation and code comments match the logic and behavior;

Distributes tokens in a manner that matches calculations;

Follows best practices, efficiently using resources without unnecessary waste;

Uses methods safe from reentrance attacks;

Is not affected by the most resent vulnerabilities;

Meets best practices in code readability, etc.

4

Umami GLP Vaults Smart Contract Audit

Zokyo’s Security Team has followed best practices and industry-standard techniques to
verify the implementation of Umami GLP Vaults smart contracts. To do so, the code is
reviewed line-by-line by our smart contract developers, documenting any issues as they are
discovered. In summary, our strategies consist largely of manual collaboration between
multiple team members at each stage of the review:

5

Umami GLP Vaults Smart Contract Audit

Executive Summary

No critical issues were identified during the audit, but two issues with high severity were
discovered, as well as some with medium, low, and informational severity levels. These
issues are comprehensively described in the "Complete Analysis" section. The contracts are
well-written and well-structured.

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the
contract’s ability to operate.

Informational

The issue affects the ability of the
contract to compile or operate in a
significant way.

High

The issue affects the ability of the
contract to operate in a way that
doesn’t significantly hinder its
behavior.

Medium

The issue affects the contract in such
a way that funds may be lost,
allocated incorrectly, or otherwise
result in a significant loss.

Critical

For the ease of navigation, the following sections are arranged from the most to the least
critical ones. Issues are tagged as “Resolved” or “Unresolved” or “Acknowledged” depending
on whether they have been fixed or addressed. Acknowledged means that the issue was
sent to the Umami Labs team and the Umami Labs team is aware of it, but they have chosen
to not solved it. The issues that are tagged as “Verified” contain unclear or suspicious
functionality that either needs explanation from the Client or remains disregarded by the
Client. Furthermore, the severity of each issue is written as assessed by the risk of
exploitation or other unexpected or otherwise unsafe behavior:

Structure and Organization of the Document

6

Umami GLP Vaults Smart Contract Audit

Complete Analysis

Findings summary

7

Umami GLP Vaults Smart Contract Audit

Acknowledged

Resolved

Resolved

Low

Resolved

Medium

Resolved

Resolved

High

Informational

Informational

Informational

Resolved

Risk

Medium

Resolved

Title

3

#

Medium

Status

Unchecked _amountOut can lead to 100% slippage

5

6

4

Resolved

High hardcoded tolerance (slippage)

Resolved

Informational

Possible zero address for intermediary asset

Resolved

Possible call to zero address

Acknowledged

9

High

Informational

Low

1

ap deposit invariant is not as expected

11

7

2

12

8

10

Price manipulation through Uniswap pool

Check for totalSupply equal 0 inside the withdraw function

AavePositionManager compatibility with Vaults might
fail in some edge cases

Unchecked shares can lead to stolen assets

The fee for the flash loan is not checked

Constant not used anywhere in code

Decrease position should not call _getOrCreateAccount

High Resolved

Price manipulation through Uniswap pool

In contract UniswapV3SwapManager, the swap of tokens is done through the
_swapTokenExactInput function, which first create the necessary parameters for the swap
and then call the function exactInput from the Uniswap V3 Router. To swap tokens, uniswap
is using liquidity pools, the pools are organized in different fee tiers, at the beginning there
we’re 3 tiers (0,05%, 0,3%, 1%), after a governance vote, they have also added the option
for the 0.01% fee tier. The likelihood of adding new pools in the future and liquidity migrating
to it or the change of non-existing pool is create an possible attack vector in this case.
UniswapV3SwapManager is generating the swap path inside the _getSwapPath, it is also
taking into consideration the existence of an intermediaryAsset for the easy of swap in case
there are no available pairsLet’s take the following example :
 Let’s say you want to swap LUSD with WETH and the intermediaryAsset is WETH, the

usual fee for the WETH intermediayAsset is 0.05% because you noticed there is the most
liquidity inthe majority of the pool, however in the case of LUSD-WETH pool, all of the
liquidity is in the 0,3% pool, 1% and 0,05% pools liquidity is almost non-existent and the
pool for 0,01% does not exist (which means it can be created and manipulated by an
attacker), this will expose the protocol to a price manipulation attack that can result in
either loss of funds or dos.

 Let’s say you want to swap USDT with USDC, intermediaryAsset is WETH, most of the
liquidity in USDC-WETH is in the 0,05% pool, so is the case for USDT-WETH, however the
pool for USDC-USDT pair with the biggest liquidity is the 0,01% fee, if you would go
directly to the to the last pool, you will also benefit from a higher liquidity but you will also
have a cheaper fee which will help you save funds, an clear example why pre-
configuration of fee tires is not always a good decision.

 Let’s say you want to swap USDC-USDT, you initially configured for the 0,05% fee tier and
everything is going fine, hoverwer a few months in the future the Uniswap dao
governance vote to add another tier pool of 0,0% fees and all the liquidity will migrate to
that pool, opening the protocol again to price manipulation attacks.

Recommendation:

To ensure the protocol is working properly no matter the conditions, drop the mechanism of
fees configuration and dynamically look for the pool with the hight liquidity when creating the
swap path.

8

Umami GLP Vaults Smart Contract Audit

High Resolved

Unchecked shares can lead to stolen assets

In contract AssetVaults, function `withdraw` takes as input parameters some assets, the
receiver of the withdrawed assets and the shares owner. The first step is to add the
withdrawal fees to the assets then convert the amount of assets + fees to shares after that
check the allowances over that shares in case the msg.sender is different from owner, burn
the shares and transfer the assets to the receiver and the fees to the fees recipient.This
function have 3 low level weak points that an attacker can chain to withdraw assets without
even owning any shares.

The weakpoints:
 Allowance checking using a math formula and making the assumption it will revert thanks

to the underflow.
 Rounding down of the assets inside the assetToShares functio
 Not sanity checking the outputed value that represents the “shares”

Scenario :
 Price per share is 1000e6 (1k usdc), usdc is 6 decimals and there are plantly of assets

inside the vault
 A malicious attacker that have never owned any shares or deposited any assets call the

withdraw function with the following parameters assets = 8e2 - fees (for a simplified
example), receiver = attacker address , owner = any address

 The first step inside the logic is to first add the fees to the assets, as we we’re saying in
the above point, the assets = 8e2-fees so assets + fees = 8e

 Now the contract converts from assets to shares using the function “assetsToShares”,
and the math formula will be like this: 8e2 * 1e6 / 1000e6 = 0 (because of the rounding
down), so variable ‘shares’ will have value

 Now the logic goes further inside the if condition because the msg.sedner != owner, it
takes the allowances of the msg.sender over the owner and stores it in variable allowed,
which will be 0, now the logic is backfilling on the assumption that the execution will
revert with an underflow because allowed - shares => underflow revert if allowed is 0,
however as shares is also 0, it will be 0 - 0 = 0 which will not revert and continue the
execution

 Now it will burn 0 shares from the owner, and as the ERC4626 version you are using is
coming from the solmate library and is prioritizing gas consumption there is no check
inside it that will prevent the burning of 0 assets.

9

Umami GLP Vaults Smart Contract Audit

 The execution continue inside the aggregateVault and it will transfer the assets to the
attack and the fees to the fee recipient.

This attack could be run inside a for loop in one transaction and use dark pools or flashbots
and other MEV techniques to send multiple transactions and acaparte multiple blocks to
create a bigger financial drain, also the Price Per Share is a very important factor here, the
bigger it is (price per share) the easier it is to attack because you can use a bigger value for
assets and still achieve a roun down that will lead to shares being 0

10

Umami GLP Vaults Smart Contract Audit

Recommendation:

 Add a sanity check to ensure shares can not be
 Put the allowance check logic inside an internal function as it is used a lot around the code

and it is just copy-pasted (redundant) and add a sanity check to revert if allowed = 0

Medium Resolved

Unchecked _amountOut can lead to 100% slippage

In contract AaveUtilsl, function `_tokenSwapOutAmount` will return in 0 when the token
amount is a small value, resulting in an swap with a _minOut of 0 which on it’s on with lead to
a swap with 100% slippage which can be easily sandwich by a MEV bot for profit.

Recommendation:

Add a sanity check for the to ensure the output of `_tokenSwapOutAmount` and _minOut can
never be 0.

Medium Resolved

Possible call to zero address

In the GmxAccountManager contract, when the _executeAccountSet function is used to
make external calls to each account using assembly, the calls will still be executed even if
some of the accounts have not been set properly (i.e., have a zero address). In this case, the
execution will not be reverted.

Recommendation:

To ensure proper behavior, add a sanity check to ensure the target address is different from
address(0).

11

Umami GLP Vaults Smart Contract Audit

Medium Resolved

High hardcoded tolerance (slippage)

In the AaavePositionManager contract the swap `TOLERANCE_BIPS` in bips is hardcoded
to a high value (2%) relative to the usual slippage (0.5%) present in swap transactions. This
can lead to smaller than expected out amounts given the in amount and it will make the
contract an open target for MEV extractors that are using sandwich attacks.

Recommendation:

Allow for this value to be configurable at least at contract level in case it needs adjustments
and start with an value of 0.5% for it.

Low Acknowledged

Possible zero address for intermediary asset

In the AaavePositionManager contract the `intermediaryAsset` field inside the Config struct
can be zero address. This leads will revert the call inside the uniswap contract, at function
exactInputInternal #101r.

Recommendation:

Set this value while deploying the contract or make sure it’s non zero before making the
uniswap call.

12

Umami GLP Vaults Smart Contract Audit

13

Umami GLP Vaults Smart Contract Audit

Low Acknowledged

AavePositionManager compatibility with Vaults might fail in some edge cases

Aave V3 is configured to work with a few selected tokens, and the mixed of selected tokens
is different on each chain, on the arbitrum chain the UNI tokens is not supported on Aave
V3, the oracle will revert if you even try to fetch prices for it, however it is available on
ethereum mainne version of Aave V3. If one of the Umami vaults will use UNI tokens as the
underlying asset, that liquidity will not be compatible with AavePositionManager handler.

Recommendation:

Ensure a strategy where only selected vaults will work with compatible handlers to not let
Keepers have surprises.

Informational Resolved

Constant not used anywhere in code

In contract AaveUtils, constant INTEREST_RATE_MODE_STABLE is declared correctly as the
stable more rate inside the Aave protocol is identified using the integer 1, however is never
used inside Umami products.

Recommendation:

Remove the constant if you don’t intend to use it.

14

Umami GLP Vaults Smart Contract Audit

Informational Resolved

Cap deposit invariant is not as expected

In contract AssetVault, the deposit and mint functionalities have a hard cap to not allow the
deposit of new assets after a certain amount, however the logic inside that condition
(invariant) is not as you would expected, usually a cap needs to be hitted, here the cap can
never be hitted because the sum of ‘tvl + assets’ always needs to be smaller then the cap for
the deposit to success.

Recommendation:

Refactor the sign < (smaller) inside the condition to <= (smaller or equal) to allow the vault to
hit it’s cap.

Informational Resolved

Decrease position should not call _getOrCreateAccount

In the AaavePositionManager contract the `_decreasePosition` function retrieves the Aave
position account by calling `_getOrCreateAccount` function. The call to that function is
redundant and unexpected in the given context, as it should call the `_getAccountOrRevert`
function which reverts in case of an inexistent position instead of creating one.

Recommendation:

Change the call to `_getAccountOrRevert` as it makes more sense in the context.

15

Umami GLP Vaults Smart Contract Audit

Informational Resolved

Check for totalSupply equal 0 inside the withdraw function

In the AssetVault contract, inside the “withdraw function, before converting the assets to
shares, is checking if totalSupply = 0, this check is redundant because if totalSupply si equal
with 0, there are no shares or assets to withdraw as the shares will be minted through the
deposit and mint function and they will be burned throug the _burn function and the
totalSupply variable is only incremented during the minting (of shares) and decremented
over the burning of shares

Recommendation:

Remove the check totalSupply = 0 as it is not necessary.

Informational Resolved

The fee for the flash loan is not checked

In the AaavePositionManager contract, specifically in the `receiveFlashLoan` function, it is
important to ensure that the payment for the loan, which includes an additional fee on top of
the borrowed amount, does not exceed a predetermined percentage of the loan amount.
This fee, determined by a function parameter and based on an external protocol, needs to be
checked to mitigate the risk of potential overcharging and protect the system from
unexpected or excessive fees during flash loan transactions. Right now the balancer vault
fee is 0, however that can change the in the future and you need to have a protocol that is
antifragile.

Recommendation:

Define a constant or configurable parameter that represents the maximum allowable fee
percentage. For example, you might set it to 1% or any other appropriate value. Verify that the
fee amount does not exceed the predetermined percentage of the loan amount.

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

BaseHandler.sol

GlpHandler.sol

BasePositionManager.sol

GmxPositionManager.sol

PositionManagerRouter.sol

BaseSwapManager.sol

GmxSwapManager.sol

OneInchSwapManager.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

16

Umami GLP Vaults Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

GlpPricing.sol

NettingMath.sol

ShareMath.sol

SwapLibrary.sol

VaultLifecycle.sol

VaultStorage.sol

Multicall.sol

PositionMath.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

17

Umami GLP Vaults Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

Solarray.sol

TimeoutChecker.sol

VaultMath.sol

BaseWrapper.sol

ChainlinkWrapper.sol

UmamiPriceFeed.sol

GlpRebalanceRouter.sol

NettedPositionTracker.sol

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

18

Umami GLP Vaults Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

VaultFeeManager.sol

AggregateVaultStorage.sol

AggregateVault.sol

AssetVault.sol

AavePositionManager

AaveIsolatedPositionAccount

AaveUtils

GmxAccountManager

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

19

Umami GLP Vaults Smart Contract Audit

PassAccess Management Hierarchy

Arithmetic Over/Under Flows Pass

GmxPositionManagerStorage

GmxPositionManagerUtils

OdosSwapManger

CorrelationRegistry

PassDelegatecall

PassHidden Malicious Code

PassUnchecked CALL
Return Values

PassExternal Contract Referencing

PassGeneral Denial Of Service (DOS)

PassFloating Points and Precision

PassSignatures Replay

Pass
Pool Asset Security (backdoors in the
underlying ERC-20)

PassRe-entrancy

PassUnexpected Ether

PassDefault Public Visibility

PassEntropy Illusion (Lack of Randomness)

PassShort Address/ Parameter Attack

PassRace Conditions / Front Running

PassUninitialized Storage Pointers

PassTx.Origin Authentication

20

Umami GLP Vaults Smart Contract Audit

We are grateful for the opportunity to work with the team.

The statements made in this document should not be interpreted as an
investment or legal advice, nor should its authors be held accountable
for the decisions made based on them.

Zokyo Security recommends the team put in place a bug
bounty program to encourage further analysis of the smart contract by third
parties.

Umami GLP Vaults

Umami GLP Vaults

