
SMART CONTRACT AUDIT

September 16th, 2022 | v.	1.0

Umami DAO

score

92

PASS
Zokyo’s Security Team has concluded
that this smart contract passes
security qualifications to be listed on
digital asset exchanges.

1

Umami DAO Smart Contract Audit

This document outlines the overall security of the Umami DAO smart contracts,
evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Umami DAO smart contract

codebase for quality, security, and correctness.

Contract Status

low Risk

Testable Code

The testable code is 98.55%, which is above the industry standard of 95%. (See Complete
Analysis)

There were no critical issues found during the audit. (See Complete Analysis)

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and

rapidly changing environment, we at Zokyo recommend that the Umami DAO team put in

place a bug bounty program to encourage further and active analysis of the smart
contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

2

Umami DAO Smart Contract Audit

6Complete Analysis

5Structure​ ​and​ ​Organization​ ​of​ ​the Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

14Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by the Zokyo Security team

. . .

3

Umami DAO Smart Contract Audit

The Smart contract’s source code was taken from the Umami DAO repository.

Repository -
https://github.com/Arbi-s/zerotwohm-contracts

Last commit -
602c110b8cd13b872f6345221c1be6f6851bf944

Auditing Strategy and Techniques Applied

. . .

Contracts under the scope:

� UMAMI.sol

Throughout the review process, Zokyo Security ensures that the contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices inefficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Umami DAO smart contracts. To do so, the code is reviewed line-by-line
by our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Truffle testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough manual review of the
codebase, line by line.

4

Umami DAO Smart Contract Audit

EXECUTIVE Summary

. . .

Zokyo team has run a deep auditing of Umami DAO’s smart contracts. The contracts

are well written and structured.

During the auditing process, there were some issues with medium and low severity
and
informational issues found. The Umami token has been deployed early in 2022. Since
there
are no major issues found, Umami DAO team do not plan on making any changes or
any
future migrations to the deployed token.

5

Umami DAO Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost,
allocated incorrectly,
or otherwise result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are

tagged “Resolved” or “Unresolved” depending on whether they have been fixed or

addressed. Furthermore, the severity of each issue is written as assessed by the risk of

exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Umami DAO Smart Contract Audit

Complete​ ​Analysis

. . .

Medium

contract VaultOwned - in body of

setVault(address vault_) external returns (bool) onlyOwner

Too much authority for one executor that might lead to funds embezzled if not

trusted

Low

Library Counters - in body of

increment(Counter storage counter) internal

Increment is executed without using the SafeMath library.

PS: Unless that is intended to save computation cost as overflow is almost

impossible to take place !

Recommendation:
Use multisig

Fix-1: according to partner’s response, The Umami DAO Multisig wallet is the address

currently set as the vault for the Umami token. All token operations are controlled through
the
DAO and through governance voting

Therefore, there’s no change needs to be made

7

Umami DAO Smart Contract Audit

. . .
Low

Informational

contract VaultOwned - in body of

setVault(address vault_) external returns (bool)

no validation done on vault_ address to make sure it is non-zero address

Fix-1: According to Partner this is intended by design. As vault_ shall be set to Zero

Address when Max Supply is determined. Hence no more minting undergone by

vault (zero address).

library Counters - in body of

current(Counter storage counter) internal view returns

(uint256)

No need to receive a storage argument in function. Recommendation - replace

by memory

Low

library SafeMath - in body of

percentageAmount(uint256 total_, uint8 percentage_)

substractPercentage(uint256 total_, uint8 percentageToSub_)

logic of these functions assume the portion to be calculated from 1000 according to

this
div(mul(total_, percentage_), 1000);

as it is expected to be 100 also according to how percentageOfTotal is

implemented.

8

Umami DAO Smart Contract Audit

. . .
Informational

Informational

contract ERC20 -

ERC20TOKEN_ERC1820_INTERFACE_ID is never used

contract UMAMI - definition of

function _burnFrom(address account_, uint256 amount_) public

From a code organization point of view, this might have been intended to be private

since burnFrom is already public.

9

Umami DAO Smart Contract Audit

. . .

Access Management Hierarchy

Arithmetic Over/Under Flows

UMAMI.sol

Delegatecall

Hidden Malicious Code

Unchecked CALL Return
Values

External Contract Referencing

General Denial Of Service (DOS)

Floating Points and Precision

Signatures Replay

Pool Asset Security
(backdoors in the
underlying ERC-20)

PassRe-entrancy

Unexpected Ether

Default Public Visibility

Entropy Illusion (Lack of Randomness)

Short Address/Parameter Attack

Race Conditions/Front Running

Uninitialized Storage Pointers

Tx.Origin Authentication

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

14

Umami DAO Smart Contract Audit

As part of our work assisting Umami DAO in verifying the correctness of their contract
code,
our team was responsible for writing integration tests using the Hardhat testing
framework.

Tests were based on the functionality of the code, as well as a review of the Umami DAO

contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security team

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

contract: UMAMI

 Initialization

✓ Should have correct initial values (167ms)
 mint()

✓ mints specified amount of token to specified address (206ms)
 sburn()

✓ burn specified amount of tokens from sender's account (86ms)
 burnFrom

✓ Should burn specified allowance from sender's account (167ms)
 increaseAllowance()

✓ increases allowances for specified account (151ms)
 decreaseAllowance()

✓ Should decrease allowances for account (84ms)
 transfer()

✓ transfer to account specified amount of tokens (68ms)
 PERMIT_TYPEHASH()

✓ permit_Typehash
 DOMAIN_SEPARATOR()

✓ DOMAIN_SEPARATOR
 permit()

✓ Should approve tokens for recipient by signing permit (109ms)
 setVault

✓ updates vault address (53ms)
 transferOwnership()

✓ Should transfer contract ownership (84ms)
 renounceOwnership

✓ enounceOwnership
 approve

✓ approve

14 passing (4s)

15

Umami DAO Smart Contract Audit

. . .

UMAMI.sol

83.7 100 98.48

98.55 81.82 100 98.61

FILE % STMTS % BRANCH % FUNCS % LINESFILE % STMTS % BRANCH % FUNCS % LINES % UNCOVERED LINES

All files 98.55 98.6181.82 100

We are grateful to have been given the opportunity to work
with the Umami DAO team.

The statements made in this document should not be
interpreted as an investment or legal advice, nor should
its authors be held accountable for the decisions made
based on them.

Zokyo's Security Team recommends that the Umami DAO
team put in place a bug bounty
program to encourage further
analysis of the smart contract by third parties.

