

Summary
 Audit Firm Guardian

 Client Firm Umami Finance

 Prepared By Daniel Gelfand, Owen Thurm, Kiki, Kristian Apostolov, ABA, 0xKato

 Final Report Date January 10, 2024

Audit Summary

Umami Finance engaged Guardian to review the security of its GMX V2 market index, GMI. From the

11th of December to the 29th of December, a team of 6 auditors reviewed the source code in scope.

All findings have been recorded in the following report.

Issues Detected Throughout the engagement 9 High/Critical issues were uncovered and promptly

remediated by the Umami Finance team. Several issues impacted the fundamental behavior of the

protocol, following their remediation Guardian believes the protocol to uphold the functionality

described for the GMI product.

Security Recommendation Given the number of High and Critical issues detected, Guardian supports

an independent security review of the protocol at a finalized frozen commit.

Notice that the examined smart contracts are not resistant to internal exploit. For a detailed

understanding of risk severity, source code vulnerability, and potential attack vectors, refer to the

complete audit report below.

🔗 Blockchain network: Arbitrum

✅ Verify the authenticity of this report on Guardian’s GitHub: https://github.com/guardianaudits

📊 Code coverage & PoC test suite: https://github.com/GuardianAudits/UmamiPoCs 2

https://github.com/guardianaudits
https://github.com/GuardianAudits/UmamiPoCs

Table of Contents

Project Information

Project Overview ………………………………………….……………………………… 4

Audit Scope & Methodology .…………………………………………………………… 5
Smart Contract Risk Assessment

Invariants Assessed …………..…………………………….………………………... 8

Findings & Resolutions …………..…………………………….……………………… 10

Addendum

Disclaimer …………………………………………………………………..…………..… 74

About Guardian Audits ………………………………..………………………………… 75

3

Project Overview

Project Summary

Audit Summary

Vulnerability Summary

4

Project Name Umami Finance

Language Solidity

Codebase https://github.com/UmamiDAO/V3-Vaults

Commit(s) 3496063b45c82c92037e07b5a6cb5cbcbd453727

Delivery Date January 10, 2024

Audit Methodology Static Analysis, Manual Review, Test Suite, Contract Fuzzing

Vulnerability Level Total Pending Declined Acknowledged Partially Resolved Resolved

 ● Critical 3 0 0 0 0 3

 ● High 6 0 0 0 0 6

 ● Medium 8 0 0 0 0 8

 ● Low 41 0 0 20 0 21

https://github.com/UmamiDAO/V3-Vaults

Audit Scope & Methodology

5

ID File SHA-1 Checksum(s)

AUTH Auth.sol 653936a83848b8325fce2da9f08ea319851fe067

GFR GmxFeeReader.sol 0f98e0bfdb11de542d7f284124409221e1698cd8

NPT NettedPositionTracker.sol 39317f285b21602c5dbb2449f2a48a3053c713a1

PRC Pricing.sol 73fc709fe089b7940d06d8d46d1b6f4e67b3dc3e

GMXS GmxStorage.sol acccaa2fe6465f8da41aeb4572fb0236b07c8f6c

MULC Multicall.sol b51b01e897163e732b94936c6374877065944c99

DGC Delegatecall.sol b6835202f0301fda4e1881a145ed7f7f812c44b4

LAVU LibAggregateVaultUtils.sol 3656066ef99cfb2055b827ca5d8258b8a315bf0a

LCY LibCycle.sol be53cb15465feb572af892b0e5ed6cbc0659085e

PRCST PriceCast.sol f9a86996a7edb3548e45eb0ca52c2b0e8d8b81d1

NETM NettingMath.sol 47b3232a8396b7684f9c288fae2fe84c5d3e1989

AGVS AggregateVaultStorage.sol 33adb51555568fd217f11690364006165bec3454

AV AssetVault.sol 19b4927edd3b5a5fe970c95bb14e57130983fc3e

AGV AggregateVault.sol 90e57f19118bd3430b0e3bcb40084b7dabe903db

BV BaseVault.sol 08d6e03ac0013a03fa457f144f45eb5762627872

BH BaseHandler.sol c1d85908fbc6118c2fdb217d56719076a43a9b13

GMI GMI.sol 4a9d80d66e6fd30dbbdd3113664633b0eeaeeb1c

GMIH GmiV2Handler.sol 480d456d3b0ab201658e72a2cd4ceb628066ebbf

GMIS GmiStorage.sol ecd097af7e96320926c9080cb13c505ade1018cb

Audit Scope & Methodology

6

ID File SHA-1 Checksum(s)

GMIU GmiUtils.sol 61bdadf9ff3ed1d22ba3e3baef768f14dd67a3fc

VF VaultFees.sol 955d80ad93b5fe54a772d1f59d5daacfcf422b91

SGV StorageViewer.sol 87d84e99bf6a113041ab3a7c2c284a0148bd924b

AGVH AggregateVaultHelper.sol ba4877395217fd4338907191596006ec40ae2327

GVH GmxV2Handler.sol 6024434f514dc62df6a4d824351d540c7177aec0

EMIT Emitter.sol 8359b41c6ee6fd421edb4bc1cf61fc51973102d5

RH RequestHandler.sol 8936994e863b70e85e87f8ee0f52b1308dabcd3e

HH HookHandler.sol 31a79f2528f8ba42b13189b852619eb75bae4cb0

PV PausableVault.sol ca5270ab1a184706f6c0620778795a0c14a53e08

7

Vulnerability Classifications

Methodology
The auditing process pays special attention to the following considerations:

● Testing the smart contracts against both common and uncommon attack vectors.
● Assessing the codebase to ensure compliance with current best practices and industry

standards.
● Ensuring contract logic meets the specifications and intentions of the client.
● Cross-referencing contract structure and implementation against similar smart contracts

produced by industry leaders.
● Thorough line-by-line manual review of the entire codebase by industry experts.
● Comprehensive written tests as a part of a code coverage testing suite.
● Contract fuzzing for increased attack resilience.

Audit Scope & Methodology

Vulnerability Level Classification

 ● Critical Easily exploitable by anyone, causing loss/manipulation of assets or data.

 ● High Arduously exploitable by a subset of addresses, causing loss/manipulation of assets or data.

 ● Medium Inherent risk of future exploits that may or may not impact the smart contract execution.

 ● Low Minor deviation from best practices.

Invariants Assessed

8

During Guardian’s review of Umami’s GM Vaults, fuzz-testing with Foundry was performed on
the protocol’s main functions. Given the dynamic interactions and the potential for
unforeseen edge cases in the protocol, fuzz-testing was imperative to verify the integrity of
several system invariants.

Throughout the engagement the following invariants were assessed for a total of 10,000+
runs up to a depth of 20 with a prepared Foundry fuzzing suite.

ID Description Tested Passed Run Count

AV-01 TVL of a Vault = PPS * Share Supply ✅ ❌ -

AV-02 Sum of User Vault Share Balances Does Not Exceed
Total Supply ✅ ✅ 10,000+

AV-03 Zero Address Vault Share Balance is Zero ✅ ✅ 10,000+

AV-04 Total supply of Asset Vault Not Modified Until
Request Is Executed ✅ ✅ 10,000+

AV-05 Asset Vault Shares Decreased By Amount
Requested on Redeem ✅ ✅ 10,000+

AV-06 TVL Does Not Increase After A Rebalance Without
Price Change ✅ ✅ 10,000+

AV-07 Total Supply Increased After Deposit ✅ ❌ -

AV-08 Assets Increased By Amount Deposited ✅ ✅ 10,000+

AV-09 Previewed Shares = Minted Shares Without Price
Movement ✅ ✅ 10,000+

AV-10 Total Supply Decreased After Redeem ✅ ✅ 10,000+

AV-11 Shares Decreased By Amount Redeemed ✅ ✅ 10,000+

https://github.com/foundry-rs/foundry

Invariants Assessed

9

ID Description Tested Passed Run Count

AV-12 Previewed Assets = Redeemed Assets Without
Price Movement ✅ ✅ 10,000+

GLOBAL-01 Rebalance Brings Allocation Closer to Target than
Original ✅ ✅ 10,000+

GMI-01 Sum of GMI Balances Of Both Vaults = GMI Total
Supply ✅ ❌ -

GMI-02 GMI Balance of Aggregate Vault Does Not Exceed
GMI Total Supply ✅ ✅ 10,000+

GMI-03 Zero Address GMI Share Balance is Zero ✅ ✅ 10,000+

Findings & Resolutions

10

ID Title Category Severity Status

RH-1 All Asset Vault Funds Can Be
Stolen Through Callbacks Logical Error ● Critical Resolved

AV-1 Request Can Be Cancelled For
Other Asset Vault Validation ● Critical Resolved

AV-2 Stale LLO Prices DoS DoS ● Critical Resolved

GVH-1 DOS Rebalance Through Simple
Transfer DoS ● High Resolved

GMIU-1 Entire Misallocation Covered On
Deposit Or Withdrawal Logical Error ● High Resolved

AGV-1 Mishandling Of Gas Stipends Logical Error ● High Resolved

RH-2 Wrong Withdrawal Fee
Calculation Parameters Passed Logical Error ● High Resolved

VF-1 Wrong GMI Conversion
Calculation Logical Error ● High Resolved

LCY-1 Incorrect GMI Attribution Logical Error ● High Resolved

RH-3 Wrong Gas Stipend Passed To
Callback Logical Error ● Medium Resolved

VF-2 Rebalance Fees Errantly Account
For Withdrawals Logical Error ● Medium Resolved

GMI-1 GMI Allocations Incorrectly
Handle Saturated Markets Logical Error ● Medium Resolved

GMI-2 Deposit Prevented By Double
Counting GM Deposits Logical Error ● Medium Resolved

Findings & Resolutions

11

ID Title Category Severity Status

RH-4 Lack Of Slippage On Deposits
And Withdrawals Slippage ● Medium Resolved

LCY-2 Zero Slippage Protection On
Swaps Logical Error ● Medium Resolved

AV-3 Vault Cap Can Be Bypassed Logical Error ● Medium Resolved

RH-5 Not Subtracting Full Size On
Withdrawal Logical Error ● Medium Resolved

RH-6 Deposit Failures Unexpectedly
Refund The Account Logical Error ● Low Resolved

GMIU-2 adjustToBalance Unbalances
Upon Withdrawal Logical Error ● Low Acknowledged

GMIU-3 GMI previewMint Rounds GM
Amounts Down Rounding ● Low Resolved

GMI-3 GMI Deposit Amount Rounded
Down Rounding ● Low Resolved

VF-3 Leap Years Are Unaccounted For Leap Years ● Low Resolved

AGVH-1 getVaultPPS Rounds In Favor Of
Deposits Rounding ● Low Resolved

LCY-3 Rebalance Functions Accessible
Outside Of Rebalance Periods Access Control ● Low Resolved

AV-4 CallbackHandler not assigned in
setPeripheral

Superfluous
Code ● Low Resolved

GMIU-4 Weight Cannot Be 0 Warning ● Low Acknowledged

Findings & Resolutions

12

ID Title Category Severity Status

AVH-2 assetVault Shares Collateral Risk Warning ● Low Acknowledged

RH-7 Lacking Event For
setCallbackEnabled Events ● Low Resolved

GLOBAL-1 Unused Functions Superfluous
Code ● Low Resolved

RH-8 Request Gas May Not Match The
Gas Provided By The User Logical Error ● Low Acknowledged

AGV-2 Performance Fees Errantly
Measured Logical Error ● Low Resolved

LCY-4 Unnecessary vaultIdx Variable Optimization ● Low Resolved

AV-5 Request Creator May Not Cancel
The Request

Unexpected
Behavior ● Low Resolved

LCY-5 Superfluous assetToMintFrom
Variable Optimization ● Low Resolved

AGV-3 Changing Fee Recipient Should
Be Done Only After A Rebalance Improvement ● Low Acknowledged

GLOBAL-2 No Validation Against Trapped
Fees Validation ● Low Acknowledged

VF-4 Excessive GMX Withdrawal Fees Logical Error ● Low Acknowledged

PV-1 Pausing Or Unpausing Spams
Identical Events Improvement ● Low Resolved

AGV-4 High Netting Threshold Can
Block Rebalancing Validation ● Low Resolved

Findings & Resolutions

13

ID Title Category Severity Status

RH-9 Unused Callback Gas Not
Refunded To User Logical Error ● Low Acknowledged

AGV-5 Epoch Delta Cleared Before Fees
Are Calculated Logical Error ● Low Resolved

AGV-6 Stale Vault Index Allocation Used Logical Error ● Low Acknowledged

AV-6 ETH Not Returned On Request
Cancelation Logical Error ● Low Acknowledged

AGV-7
AggregateVault Can Be
Completely Drained By Excessive
Fees

Centralized Risk ● Low Acknowledged

AGV-8 Attacker can Prevent Closing of
Rebalance Warning ● Low Acknowledged

AGV-9 Changing Fee Percentage Should
Be Done After Rebalance Logical Error ● Low Acknowledged

AGV-10
CLOSE_REBALANCE_HOOK Is
Called Before Rebalance Gets
Closed

Logical Error ● Low Acknowledged

LCY-6 Rebalance DoS With Empty
Deposit Amounts DoS ● Low Resolved

VF-5 Precision Loss When Calculating
Fees Precision ● Low Acknowledged

GLOBAL-3 Redundant Code Superfluous
Code ● Low Resolved

LAVU-1 Sum Of Vault’s GMI Less Than
Total Supply Precision ● Low Acknowledged

AGVH-2 TVL Not Equal To PPS Multiplied
By Shares Precision ● Low Resolved

Findings & Resolutions

14

ID Title Category Severity Status

RH-10 Total Supply Does Not Increase
After Deposit Precision ● Low Resolved

GVH-2 Missing Minimum Output
Amount On GMX Operations Logical Error ● Low Acknowledged

LCY-7 Unused Output Amount Leads to
Skew Logical Error ● Low Acknowledged

VF-6 Management Fees Deducted
Based On Performance Logical Error ● Low Acknowledged

LCY-8 State Does not Unwinded
Properly on Failed Fulfillments Logical Error ● Low Acknowledged

RH-11 Revert Bytes Gas Griefing Gas Griefing ● Low Acknowledged

GLOBAL-4 Lacking onlyDelegateCall
Modifier Modifiers ● Low Acknowledged

RH-1 | All Asset Vault Funds Can Be Stolen Through Callbacks

Description

The request that is currently being executed in RequestHandler.executeRequest() is cleared at the
end of the function. This presents a critical problem as users can execute a deposit/withdraw
request with a callback to an arbitrary address that they pass by using
assetVault.depositWithCallback() or assetVault.redeemWithCallback().

This callback will be executed before the request gets removed, leaving room for exploitation.
assetVault.cancelRequest() immediately cancels a request and returns the funds to the user.

1. Create a deposit/withdraw request with a callback to an arbitrary contract we control.
2. The keeper picks up the request and executes it.
3. We call assetVault.cancelRequest() in the afterDepositExecution()/afterWithdrawalExecution()
callback to cancel the request and return the funds to us immediately.
4. We now have the same funds/vault shares as before the request but have also received the funds
from the request.

The exploit described above puts all funds in the asset vaults at risk of being stolen.

Recommendation

Call aggregateVault.clearRequest(key) before executing the callback.

Resolution

Umami Team: The issue was resolved in commit 8227df2.

15

Category Severity Location Status

Logical Error ● Critical RequestHandler.sol Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/8227df25a53496d18e0ce4a2ee742c19064e5a8b
https://github.com/GuardianAudits/UmamiPoCs/pull/1

AV-1 | Request Can Be Cancelled For Other Asset Vault

Description

When a user cancels their request with the function cancelRequest, it is verified that the user
cancelling the request is indeed the sender who sent the request. Afterwards, the funds contained in
the Asset Vault are sent to the user depending on the amount of the request.

However, there is no validation done to ensure that a user who deposited/redeemed into one Asset
Vault is not cancelling the created request on the other Vault.

For example, for illustrative purposes, consider the drastic scenario of a user creating a 1 ether
deposit into the ETH Vault. The user can then trivially call cancelRequest on the USDC Vault, and be
refunded 1e18 USDC. This leads to an enormous loss of funds for the USDC Vault depositors which
is extremely easy to perform.

Recommendation

Use the vault attribute of the OCRequest to ensure that cancellation is only performed for the Asset
Vault in which the deposit/redeem was intended.

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

16

Category Severity Location Status

Validation ● Critical AssetVault.sol: 146 Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5
https://github.com/GuardianAudits/UmamiPoCs/commit/f4c86b33be7f298296d2b1a485be946074edcfca

AV-2 | Stale LLO Prices DoS

Description

Chainlink LLO prices are only updated during the opening and closing of rebalancing periods and the
RequestHandler.executeRequest function. Yet, LLO prices are used in the logic for users to initiate
withdraws/deposits on the AssetVault when previewing the deposit fee with the previewDepositFee
function and previewing the withdrawal fee with the previewWithdrawalFee function.

Stale LLO prices, which users cannot update themselves, will cause users's withdraw/deposit
initiations to revert as the withdraw/deposit fee estimation code checks that the LLO prices are no
more stale than 1 Arbitrum block.

Additionally, protocol operators should update the latest LLO prices before calling the cycle or
fulfulRequests functions during rebalance as these functions rely on up-to-date LLO prices.

Recommendation

Do not rely on LLO pricing for the user-initiated deposits and withdrawals. Instead in the
previewDepositFee and previewWithdrawalFee functions pass false as the useLlo value.

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

17

Category Severity Location Status

DoS ● Critical AssetHandler.sol: 385, 403 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

GVH-1 | DOS Rebalance Through Simple Transfer

Description

A Denial of Service (DoS) attack can occur on rebalances by forcing the Umami-calculated
estimateExecutionFee to be less than GMX’s minExecutionFee.

As only one token is being deposited on a rebalance, Umami calculates the estimateExecutionFee
and enters an if statement, returning the smaller value compared to if it were to deposit two tokens.

The issue arises when an attacker forcibly sends 1 wei of the opposite token to GMX. The other gas
limit value is then used, which is greater than what Umami used to calculate estimateExecutionFee.

This leads to a revert in the validateExecutionFee function. With this attack, it becomes impossible
to perform a rebalance, rendering the core feature of the protocol unusable.

Recommendation

Send excess WETH for the execution fee, as any excess would be refunded anyway. This mitigates
the risk of the DoS attack and ensures the rebalance functionality remains functional.

Resolution

Umami Team: The issue was resolved in commit 8f3f436.

18

Category Severity Location Status

DoS ● High GmxV2Handler.sol: 148 Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/8f3f436b5c6edb8dee98b493b4a014b98117687e
https://github.com/GuardianAudits/UmamiPoCs/pull/4

GMIU-1 | Entire Misallocation Covered On Deposit Or Withdrawal

Description

In the adjustToBalance function when the shareValue is insufficient to cover the entire
underAllocation, the difference array with the entire positive underAllocations is returned. However,
the shareValue is insufficient to cover these underAllocation amounts.

As a result, whenever a share amount is minted that is unable to cover the entire underAllocation, the
entire underAllocation amounts will be charged to the caller while only remunerating the caller with
the insufficient share amount that was specified.

This issue is most clearly demonstrated with a mint of a single wei. The single wei will be insufficient
to cover the entire underAllocation, as a result, the caller is errantly required to provide the entire
underAllocation amount in GM tokens to mint the specified single wei of GMI.

Similarly, this issue is present with withdrawals, where redeeming a single wei of shares will result in
the withdrawer receiving the entire over-allocation amount.
This is a fundamental accounting error and will significantly affect the assetVault share values and
the GMI valuation over time.

Recommendation

Replace the return statement on line 72 with:
Solarray.arrayAddProportion(toBalanceAmount, shareValue, difference, underAllocation, true);

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

19

Category Severity Location Status

Logical Error ● High GmiUtils.sol: 72 Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5
https://github.com/GuardianAudits/UmamiPoCs/pull/10/files

AGV-1 | Mishandling Of Gas Stipends

Description

The protocol charges users an amount for gas since the protocol employs an asynchronous model
where keepers pick the transactions up and execute them. The protocol checks whether the user has
sent enough ETH in msg.value and if so adds their transaction to the uncompleted transaction
queue.

The issue here comes in due to how those gas fees are handled. The following checks whether the
user has sent enough funds to cover the gas to be expended by the keeper:
require(msg.value >= gas, "AggregateVault: !gasRequirement");

The issue with the above check is that it assumes that gas is in terms of ETH instead of in gas units
as it is.

Given that the gas stipend for a request is within the 100,000 - 1,000,000 range the transaction's gas
cost on the the user's side will be extremely low - less than a billionth of a cent since ETH is in 18
decimals. This will cause the protocol to lose funds in keeper gas fees on every deposit/withdrawal
request that gets executed.

Recommendation

Consider converting the gas units into a notional value before checking whether the amount passed
by the user is sufficient by multiplying it by tx.gasprice.

Resolution

Umami Team: The issue was resolved in commit 8227df2.

20

Category Severity Location Status

Logical Error ● High AggregateVault.sol Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/8227df25a53496d18e0ce4a2ee742c19064e5a8b
https://github.com/GuardianAudits/UmamiPoCs/pull/2

RH-2 | Wrong Withdrawal Fee Calculation Parameters Passed

Description

The protocol charges users fees on deposit and withdrawal. Those fees are based on the
percentages set by the protocol and on the size in the asset vault's native token of the amount being
deposited/withdrawn.

The issue here is due to a share size being passed to the aggregateVault.previewWithdrawalFee
function even though the function that calculates the said fee - VaultFees.getWithdrawalFee()
assumes it is a native token amount.

As the vault's TVL grows and more yield is gained through its strategies, each share will be worth
more. However, this will not be represented when calculating the withdrawal fee as the calculations
will think that the amount of shares passed in is the native token amount.

This directly impacts the protocol as the fees it will receive on withdrawal will be substantially lower
than expected leading to a loss of fees for the protocol.

Recommendation

To mitigate the issue convert the vault shares into their native asset’s worth before passing them to
aggregateVault.previewWithdrawalFee().

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

21

Category Severity Location Status

Logical Error ● High RequestHandler.sol:87 Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5
https://github.com/GuardianAudits/UmamiPoCs/pull/7

VF-1 | Wrong GMI Conversion Calculation

Description

GMX fees get added on top of the base withdraw/deposit fees if they are enabled through
shouldUseGmxFee. In the case of a withdrawal, those fees are calculated based on the withdrawal
size in GMI.

The issue arises due to the following line, which gets used to turn the withdrawal size into GMI,
which then gets turned into corresponding GM token amounts:
gmi.sharesToMarketTokens(size * gmi.pps(prices) / 10 ** ERC20(asset).decimals(), prices).

The formula used for the calculation does not convert a USD notional amount into GMI, but quite the
opposite.

This will always lead to a much larger fee due to the skewed GM token amounts, thus losing users'
funds through excessive fees.

Recommendation

Convert size into a USD notional value and use a formula for converting USD into GMI: size * 1e18 /
gmi.pps(prices).

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

22

Category Severity Location Status

Logical Error ● High VaultFees.sol:137 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5

LCY-1 | Incorrect GMI Attribution

Description

The global state variable vaultGmiAttribution represents the exact amount of GMI attributed to each vault. Throughout
the codebase it is repeatedly set using the _commitGmiDeltaProportions function from the LibCycle library.

This function incorrectly uses the vaultGmiAttribution values as percentages, which they are not, instead of absolute
values. Because of this, the prevAmounts are extremely large and any _amt being added to will be minuscule in
comparison which leads to almost 0% change in the proportions. The larger the amount is, the more the allocations
will deviate from the intended values.

A direct, severe issue, appears during a rebalance when internally swapping GMI for native assets for internally
settable differences between the 2 vaults. After swapping native tokens (L146-L152) the new allocations need to be
saved from each vault, removing GMI from one vault and adding to another (L156-L172).

Since the call to _commitGmiDeltaProportions results in no practical change in the percentage, users are directly
losing funds via depreciation of vault shares, since ETH will be swapped in these cases but GMI attribution has not
changed.

To illustrate the impact, consider the following scenario:

● Total GMI valuation of $6 million
● Initial vault GMI allocation: 57% (57.0000090250015061%) USDC vault and 43% (42.9999909749984939%)

WETH vault an amount approx $300K GMI (5% of GMI amount) is needed be moved from one vault to another

In this case, the current, incorrect implementation shows that the vault allocation, after adding the new amount, is:
USDC: 57% (57.0000095000015852%), ETH: 43% (42.9999904999984147%). The new amount impact is erased and
$300K worth of ETH is not GMI attributed.

If the correct implementation would be used, the resulting allocations are USDC: 60% (60.0000095000015853%), ETH:
40% (39.9999904999984146%). The error in this case is an absolute 3% value in allocation.

Recommendation

Modify the _commitGmiDeltaProportions to correctly work with and save the values as absolute amounts.

Resolution

Umami Team: The issue was resolved in commits 90b2627 and e3e3cef.

23

Category Severity Location Status

Logical Error ● High LibCycle.sol: 403-420 Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/90b26276391280c770c1c19d7c40a3da9687c60f
https://github.com/GuardianAudits/UmamiPoCs/commit/e3e3cefcf50300e02e9ffccdd3e9301d0c1e9465
https://github.com/GuardianAudits/UmamiPoCs/pull/11

RH-3 | Wrong Gas Stipend Passed To Callback

Description

The storage of AggregateVault has two variables for the two different gas fees that are paid by users
when they create a request: executionGasAmount and executionGasAmountCallback. The former is
for normal requests and the latter is for requests with callbacks.

The issue arises due to how executionGasAmountCallback is handled when calling the callback
address the user provided. executionGasAmountCallback is passed directly as a gas stipend to the
callback call even though it is intended to cover the whole call.

This issue causes the protocol, and more specifically the keeper, to provide a much higher gas
stipend to the callback, resulting in loss of funds on every transaction. Another potential issue is the
depletion of the keeper's ETH balance through large amounts of malicious requests aimed at
disrupting deposits and withdrawals of innocent users.

Recommendation

Consider passing executionGasAmountCallback - executionGasAmount as a gas stipend to callback
calls.

Resolution

Umami Team: The issue was resolved in commit 8227df2.

24

Category Severity Location Status

Logical Error ● Medium RequestHandler.sol Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/8227df25a53496d18e0ce4a2ee742c19064e5a8b

VF-2 | Rebalance Fees Errantly Account For Withdrawals

Description

When the rebalance fees are computed with the _getVaultRebalanceFees function, the magnitude of
the funds withdrawn during the epoch is added to the lockedBalanceSansUserDelta with the
userPositionDelta variable. The resulting lockedBalanceSansUserDelta is ultimately the amount that
is fee’d.

However this incorrectly fees the remaining assets in the vault, the issue becomes clear considering
the following (unreasonable, yet demonstrative) example:

● 90% of the funds in the vault are withdrawn in a single epoch
● 10% of the funds remain, and the users holding that remaining amount are subject to a fee

based upon the entire 100%.
● Those who withdrew are not subject to this fee.
● The remaining users are exposed to an exorbitant fee as a percentage of their holdings.

This specific example is hyperbolic and unlikely to ever arise but is used merely to demonstrate the
inaccuracy of the fee logic and the smaller-scale inequality that will occur on every rebalance.

Additionally, the current fee calculations clearly misaccount these withdrawn amounts because they
are treated as if they were in the system for the entire epoch. The performanceFeePercent,
managementFeePercent, and timelockYieldPercent are all computed based on the percentYear of
the past epoch and applied to these withdrawn amounts.

However, the withdrawn amounts by definition cannot have been present in the vault for this entire
period, in the worst case they will have been withdrawn from the vault at the beginning of the epoch.

Recommendation

Do not fee the remaining vault amounts based on the withdrawn amounts during the epoch.

Resolution

Umami Team: The issue was resolved in commit ea5e0e7. 25

Category Severity Location Status

Logical Error ● Medium VaultFees.sol: 228 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5

GMI-1 | GMI Allocations Incorrectly Handle Saturated Markets

Description

When a rebalance is underway, the GMI shares to be minted are validated by the _validateMintableAmounts
function from the GMI contract.

The function incorrectly considers that the maximum allowed USD equivalent value to be deposited into the
asset-specific GMX pool is via the backing token with the lowest availability, not the highest. This results in
incorrect asset allocations for cases where the equivalent amount value cannot be deposited in the pool via
the saturated backing token, but could have been deposited in the other one.

In _validateMintableAmounts, the maximum ETH value in USD (mintableEth) and maximum USDC value in
USD (mintableUsdc) that can be deposited into each GMX asset market per backing token are calculated.
Out of these two amounts, the largest should be selected as exactly how much can be deposited into the
specific GMX pool using only one operation.

The issue is that the maxMintable chooses the smaller, not the larger out of the 2 values.This results in an
incorrect maximum allocation amount for that particular asset pool, lower than it can be deposited. Consider
a situation where a GMX pool gets long saturated and the protocol does a rebalance towards the short
token.

The _validateMintableAmounts function will incorrectly indicate that the maximum you can deposit into that
saturated pool is almost nothing since it uses the lowest available amount from the saturated one for
validation.

This situation would result in depositing into the fallback pool, which will revert when also saturated.
Ultimately, the protocol becomes imbalanced, risking the loss of user funds.

Recommendation

Base the previewMint and _validateMintableAmounts functions maximum mint amount on the asset being
used to mint, not always take the greater or the smaller one. This would eliminate any issue that may appear
due to over or underestimating the maximum amount.

Resolution

Umami Team: The issue was resolved in commit 3940624.
26

Category Severity Location Status

Logical Error ● Medium GMI.sol: 406 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/394062477e352f7c1580e3a87a5ff22c9110d04b

GMI-2 | Deposit Prevented By Double Counting GM Deposits

Description

In the deposit function, the previewMint function is called with the shares that are to be minted to the
caller for their deposited GM amounts.

The previewMint function contains the _validateMintableAmounts validation at the end of the
function which accounts for the share value being deposited into the GMX V2 system and reverts if
the additional deposit tokens would put the GM market over the deposit cap.

However, during a deposit, these GM tokens have already been minted and there are no additional
long or short tokens that will be deposited into the GM market.

Therefore, this validation erroneously accounts for long/short tokens being deposited when they will
not be, and as a result, causes unnecessary reverts when these phantom long/short token amounts
exceed the deposit cap in GMX V2, ultimately causing DoS attacks on deposits.

Recommendation

Do not perform the _validateMintableAmounts validation when depositing already minted GM tokens
into GMI.

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

27

Category Severity Location Status

Logical Error ● Medium GMI.sol: 90 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5

RH-4 | Lack Of Slippage On Deposits And Withdrawals

Description
Deposits and withdrawals to/from the asset vaults are a 2 step operation. The user initiates the
action, thus creating a pending order and a keeper asynchronously executes that operation.

Although the execution keeper operates relatively fast, between 1-3 blocks since the initial request,
there will still exist situations where an operation is initiated exactly before a rebalance is opened.
During a rebalance, operations cannot be executed by the keeper, as such the user action will only be
executed after the rebalance closes.

An issue is that users expect their deposit/redeem to result in the exact amounts indicated by the
previewDeposit and previewRedeem functions at that time, but because of the price being
recalculated again at the time the operation is executed, users may experience negative slippage and
obtain fewer tokens.

During an epoch, a meaningful difference may not appear due to fast keeper response, but for those
transactions that ultimately do become pending during a rebalance, the price difference may be
significant enough of a loss. Since these operations flow normally, this situation will occur.

Recommendation
Add a slippage parameter when users deposit/redeem into the vault which will be passed and used
by the RequestHandler when invoked by the keepers. Since the vaults are not meant to be ERC4626
compliant, this alteration does not come with a negative impact on the protocol.

Resolution
Umami Team: The issue was resolved in commit ea5e0e7.

28

Category Severity Location Status

Slippage ● Medium RequestHandler.sol: 85-89, 97-100 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5

LCY-2 | Zero Slippage Protection On Swaps

Description

In the rebalanceGmi function, if isOppositeDirection is true, it attempts to swap one token for the
other to rebalance before the minting and burning processes. This is achieved by swapping through
UniswapV3.

When the swap is executed, the _minOut is set to zero. This means that regardless of how much
slippage the swap incurs, the execution will continue. This poses a security risk, as attackers can
perform a sandwich attack on this swap on UniswapV3 and steal funds if they have sufficient
capital.

The impact of this is that any attempt to rebalance while isOppositeDirection is true will lead to an
excess loss of funds due to the lack of slippage protection.

Recommendation

Set a _minOut value so that swaps do not incur more slippage than expected.

Resolution

Umami Team: The issue was resolved in commit 7aa7161.

29

Category Severity Location Status

Logical Error ● Medium LibCycle.sol: 390 Resolved

https://github.com/UmamiDAO/V3-Vaults/pull/36/commits/7aa71617b5bcedc1939826e697650fbfec363b47

AV-3 | Vault Cap Can Be Bypassed

Description

Before depositing funds into the protocol, the deposit functions perform a check to ensure the vault
cap will not be exceeded:
require(totalAssets() + assets <= previewVaultCap(), "AssetVault: over vault cap");

However, the totalAssets() function does not consider the funds that are still pending to be sent into
the AggregateVault. As a result, User A can deposit funds that reach the cap but will not be included
in the TVL.

User B will then make another deposit, and since the current TVL has not been updated yet, their
deposit to AssetVault will also go through. Once both requests are settled, the vault cap will be
bypassed.

Recommendation

Validate the vault cap upon request execution so that it cannot be easily exceeded by a potentially
significant amount.

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

Guardian Team: Because the balance of unlodged assets is now added to the vault cap validation in
the AssetVault, the more assets that are waiting to be lodged the less likely it is that the deposited
assets will fail the validation. Consider omitting asset.balanceOf(address(this)) from the AssetVault
cap validation.

30

Category Severity Location Status

Logical Error ● Medium AssetVault.sol Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5
https://github.com/GuardianAudits/UmamiPoCs/pull/5

RH-5 | Not Subtracting Full Size On Withdrawal

Description

epochDelta is used to track the amount of deposits/withdrawals during an epoch. It grows positive
when more funds are being deposited than being withdrawn and vice versa.

The issue arises due to how the protocol increments and decrements epochDelta. The protocol
increments the delta with the amount deposited after the fees get subtracted from it, thus only
incrementing with the amount that entered the AggregateVault.

aggregateVault.incrementEpochDelta(underlyingToken, assetsSansFees.toInt256())
However, the same pattern is not followed in the withdrawal logic. Instead of decreasing the whole
amount that leaves the vault only size - fees get subtracted.

aggregateVault.incrementEpochDelta(underlyingToken, -(assetsSansFees.toInt256()))
This will result in an imbalance where depositing the same amount has a higher impact on
increasing epochDelta compared to the mitigating effect of withdrawing, thereby exposing the
protocol to fund loss due to reduced fees.

This happens due to the subtraction of positive epochDelta from the current TVL during withdrawal
fee calculations.

Recommendation

Decrement epochDelta by assets instead of assetsSansFees .

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

31

Category Severity Location Status

Logical Error ● Medium RequestHandler.sol:92 Resolved

PoC

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b
https://github.com/GuardianAudits/UmamiPoCs/pull/9

RH-6 | Deposit Failures Unexpectedly Refund The Account

Description

When a deposit request is made on behalf of another account and fails execution, the native assets
are sent to the receiver instead of the sender of the request, who initiated the request and provided
the funds.

This may be unexpected behavior as the sender would expect to receive their funds back if the
request was not successfully executed.

Recommendation

Consider sending the funds to the sender on a deposit request fail.

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

32

Category Severity Location Status

Logical Error ● Low RequestHandler.sol: 58 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e701eb08991448b249d3e927217f7756db5

GMIU-2 | adjustToBalance Unbalances Upon Withdrawal

Description
In the adjustToBalance function, when there is an overallocation of GM tokens during a deposit the
overallocation is offset by depositing into all other GM tokens at a ratio between the weight of the
over-allocated market and the other market. This is desired during deposits as the higher-weighted
market should receive a greater amount to move closer to the desired weightings.

However, during a deposit, the opposite occurs. A larger portion of GM tokens are withdrawn from
the higher target weight market, ultimately moving the market balances further away from the
desired weightings rather than closer.

For example, consider the following scenario:
The desired weightings are 0.2, 0.3, 0.25, and 0.25 respectively. And the respective GM token
balances are 25, 25, 20, and 30.

The third market is underallocated by 5 GM tokens so markets 0,1, and 3 will have an increased
withdrawal amount relative to the proportion of their target weighting to the target weighting of
market 2.

Market 0 will only be decreased by 4 GM tokens, while market 1 will be decreased by 6 GM tokens.
However the desired weighting of market 1 is higher than that of market 0, therefore this rebalancing
moves the GM distribution further away from the desired weighting.

Withdrawals will often move GMI away from the desired weighting of GM tokens resulting in the
desired positions not being met. This directly undermines the protocol’s goal of maintaining a
balanced index for GMI.

Recommendation
When the adjustToBalance function is being used in a withdrawal context the balanceWeightings
should be calculated using a weights[i] / weights[j] ratio rather than the weights[j] / weights[i] ratio so
that higher weighted GM markets are reduced less than lower weighted ones.

Resolution
Umami Team: Acknowledged.

33

Category Severity Location Status

Logical Error ● Low GmiUtils.sol: 85 Acknowledged

GMIU-3 | GMI previewMint Rounds GM Amounts Down

Description

In the previewMint function, the gmValueToMint returned from the GmiUtils.adjustToBalance
function is rounded down as the shareValue which is used to determine the GM token amounts
required uses round-down division.

Therefore the amount of GM tokens that the aggregateVault will use to mint GMI is often less than
the value of the GMI shares that the aggregateVault receives.

This is not an issue when the aggregateVault holds all of the GMI shares, however in the future when
other third-party actors may also hold GMI, then all other holders of GMI are diluted by deposits.

Recommendation

Consider rounding the shareValue up in the adjustToBalance function to avoid diluting other holders
of GMI for the future where the aggregateVault is not the only holder of GMI.

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

34

Category Severity Location Status

Rounding ● Low GMIUtils.sol: 68 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

GMI-3 | GMI Deposit Amount Rounded Down

Description

When depositing GMI, the computed PPS used to calculate the shares received is rounded down.
However, in the future, GMI may be supported for other third-party users. In that case, it would be
important to round the PPS up upon deposits.

This way, any third-party users would receive less share value than the amount of GM tokens they
deposit, rather than more share value compared to the amount of GM tokens they deposit.
The precision loss due to rounding the PPS down is trivial but may pose a risk in the future.

Recommendation

Consider rounding the PPS up when computing the amount of shares to mint upon depositing into
GMI.

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

35

Category Severity Location Status

Rounding ● Low GMI.sol Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

VF-3 | Leap Years Are Unaccounted For

Description

In the VaultFees contract the YEAR constant is defined as being exactly 365 days in seconds, rather
than 365.25 days to account for leap years.

Recommendation

Consider changing the YEAR value to 31557600 to account for leap years.

Resolution

Umami Team: The issue was resolved in commit b919f11.

36

Category Severity Location Status

Leap Years ● Low VaultFees.sol Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

AGVH-1 | getVaultPPS Rounds In Favor Of Deposits

Description

In the getVaultPPS function, round-down division is used regardless of whether the function is being
used to determine the shares a user receives upon a deposit or the assets a user receives on
withdrawal.

This behavior rounds in the favor of the user upon deposits, allowing the user to deposit at a lower
PPS due to precision loss. Though the precision loss is minor and is unlikely to have an impact it
could be leveraged in a more complex attack.

Recommendation

To avoid any potential manipulations as a result of this precision loss, consider rounding up when
the getVaultPPS function is being used to determine the amount of shares a user will receive for a
deposit and rounding down when the getVaultPPS function is being used to determine the amount of
assets a user will receive from a withdrawal.

Resolution

Umami Team: The issue was resolved in commit 54ada0e

Guardian Team: We recommend rounding against the user in the AssetVault’s pps function during a
redeem operation by passing isDeposit = false.

37

Category Severity Location Status

Rounding ● Low AggregateVaultHelper.sol: 105, 111 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

LCY-3 | Rebalance Functions Accessible Outside Of Rebalance Periods

Description

Neither the cycle function nor the fulfilRequests function validate that the system is indeed within a
rebalancing period when they are being called.

These functions can only be triggered by a trusted party, however, they should be restricted to only
rebalance periods as important validation and caching must occur before these functions are
invoked.

Recommendation

Validate that the protocol is currently in a rebalancing period in the cycle and fulfilRequests
functions.

Resolution

Umami Team: The issue was resolved in commit b919f11.

38

Category Severity Location Status

Access Control ● Low LibCycle.sol Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

AV-4 | CallbackHandler not assigned in setPeripheral

Description

The setPeripheral function does not allow a value to be assigned for the Peripheral.CallbackHandler.
Nor is the Peripheral.CallbackHandler is used anywhere in the codebase.

Recommendation

Consider removing the redundant Peripheral.CallbackHandler value from the Peripheral enum,
otherwise implement the desired use case for the Peripheral.CallbackHandler value.

Resolution

Umami Team: The issue was resolved in commit b919f11.

39

Category Severity Location Status

Superfluous Code ● Low AggregateVault.sol Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

GMIU-4 | Weight Cannot Be 0

Description

When distributing the overallocated difference, the algorithm divides the jth weight by the ith weight.
If the ith weight is 0, a division by 0 revert will occur.

Because adjustToBalance is called in previewMint which is used in function _increaseGMI, a
rebalance could fail due to a reverted cycle operation.

Recommendation

Ensure none of the weights are set to 0.

Resolution

Umami Team: Acknowledged.

40

Category Severity Location Status

Warning ● Low GmiUtils.sol: 85 Acknowledged

AVH-2 | assetVault Shares Collateral Risk

Description

The assetVault shares are valued at the cached vaultState.rebalancePPS during the rebalance
period, but as soon as the rebalance period is closed, the valuation of the assetVault shares will
experience a stepwise jump to the current valuation.

Because of this stepwise jump, the assetVault shares should not be a candidate for collateral in any
borrow/lending system, as there is a risk that a malicious user could deposit vault shares as
collateral while they are valued at the cached price and ultimately have an insolvent position when
the assetVault share price drops.

Borrow/lending platforms introduce a safety threshold between liquidation and solvency to address
this, however there is a small risk that the magnitude of the stepwise jump exceeds this safety
threshold. Any occurrence of this should be rare as rebalances are not intended to be large.

Recommendation

This is simply a warning to anyone who would integrate with the Umami GMI system and potentially
accept the assetVault shares as collateral.

Resolution

Umami Team: Acknowledged.

41

Category Severity Location Status

Warning ● Low AggregatorVaultHelper.sol: 92 Acknowledged

RH-7 | Lacking Event For setCallbackEnabled

Description

When the callback functionality is enabled by the RequestHandler contract, by calling the
setCallbackEnabled function, there is no event is emitted.

Recommendation

Emit an event on the call to the setCallbackEnabled function.

Resolution

Umami Team: The issue was resolved in commit 54ada0e

42

Category Severity Location Status

Events ● Low RequestHandler.sol: 37-39 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

GLOBAL-1 | Unused Functions

Description
The following functions are not used in the protocol:

● _vaultGmiProportion
● _exactOutputSwap

Recommendation

Consider removing these functions.

Resolution

Umami Team: The issue was resolved in commit b919f11.

43

Category Severity Location Status

Superfluous Code ● Low Global Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

RH-8 | Request Gas May Not Match The Gas Provided By The User

Description

The gas amount forwarded to the request.callback contract is always the current
executionGasAmountCallback in storage:
gas: storageViewer.getExecutionGasAmountCallback()

This presents an issue as users are made to pay it on submitting the request:
uint256 gas = _gasRequirement(callback != address(0));

In the case of a change of the executionGasAmountCallback amount, users will either get more gas
than they paid for or will get less.

Recommendation

Consider keeping the gas amount the user paid for as a value in the request struct and using it
instead.

Resolution

Umami Team: Acknowledged.

44

Category Severity Location Status

Logical Error ● Low RequestHandler.sol Acknowledged

AGV-2 | Performance Fees Errantly Measured

Description

In the closeRebalancePeriod function, the performance fees for the previous epoch are collected
after setting the vaultState.rebalanceOpen to false. As a result, the cached vaultState.rebalancePPS
is not returned when using the getVaultPPS function to determine whether the performance fees
should be charged.

This behavior errantly treats the current vaultPPS after the rebalance as if it applied for the entire
period before the rebalance occurred.

This results in cases where the performance fee is missed due to the rebalance dipping the vaultPPS
below the watermark.

This may occur as a result of swapping fees and/or fees from GMX. Additionally, the performance
fee may be charged when instead it should not if the vaultPPS is increased above the watermark
after the rebalance, though this case is rarer.

Recommendation

Close the rebalance period after fees are calculated so that the cached vaultPPS is used rather than
the PPS resulting from the rebalance.

Resolution

Umami Team: Acknowledged.

45

Category Severity Location Status

Logical Error ● Low AggregateVault.sol: 228, 237 Resolved

LCY-4 | Unnecessary vaultIdx Variable

Description

In the rebalanceGmi function the vaultIdx is unnecessarily fetched using the
getTokenToAssetVauldIndex function when the vault index is directly available as the index of the
for-loop, i.

Recommendation

Use the for-loop index to indicate the vault rather than fetching the vaultIdx with the
getTokenToAssetVaultIndex function.

Resolution

Umami Team: The issue was resolved in commit b919f11.

46

Category Severity Location Status

Optimization ● Low LibCycle.sol: 191 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

AV-5 | Request Creator May Not Cancel The Request

Description

In the redeem and redeemWithCallback functions, the owner is assigned as the request.sender when
the request is created. The request.sender is used to validate the account that may cancel the
request in the Umami system.

However, in some cases, the owner may not be the creator of the request. The owner may approve a
third-party actor to create requests on their behalf. In this case, it would be appropriate to allow this
third-party creator to cancel the request as well, however, they are not able to do so.

Recommendation

Consider changing the request.sender to the msg.sender in the redeem and redeemWithCallback
functions. Otherwise, consider allowing both the owner and the request creator to cancel the
request.

Resolution

Umami Team: The issue was resolved in commit b919f11.

Guardian Team: A user with an allowance can cancel the request with function cancelRequest, or
have the request execution fail, and end up with the original owner's shares. Clearly document this
behavior.

47

Category Severity Location Status

Unexpected Behavior ● Low AssetVault.sol: 84, 141, 149 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

LCY-5 | Superfluous assetToMintFrom Variable

Description

In the _increaseGmi function the assetToMintFrom is assigned to the _asset parameter in every
iteration of the for-loop, however, it is unnecessary to declare this assetToMintFrom variable as it will
always be the _asset value.

Recommendation

Remove the assetToMintFrom variable declaration and use the _asset parameter value directly.

Resolution

Umami Team: The issue was resolved in commit b919f11.

48

Category Severity Location Status

Optimization ● Low LibCycle.sol: 210 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

AGV-3 | Changing Fee Recipient Should Be Done Only After A Rebalance

Description

Rebalancing the vaults results in a fee being paid to the designated feeRecipient at that time.
This recipient, as it is, can be changed at any time by a configurator by calling the setFeeRecipient
function from the AggregateVault contract.

Changing the fee at a random point represents a loss for the original fee recipient, as they have been
the recipient since the last rebalance up until that point. Consider the situation during a normal
operation period and right before opening a rebalance period.

Recommendation

When setting the new fee recipient, set a pending recipient, which is changed only when the
rebalancing period is closed and the fee is paid. At that point, the fee is paid to the old recipient and
the pending recipient becomes the actual fee recipient.

Resolution

Umami Team: Acknowledged.

49

Category Severity Location Status

Improvement ● Low AggregateVault.sol: 532 Acknowledged

GLOBAL-2 | No Validation Against Trapped Fees

Description

When configuring the vaultFees with the setVaultFees function, there is no requirement that the
depositFeeEscrow and withdrawalFeeEscrow are configured to nonzero addresses if the deposit and
withdrawal fees are configured to nonzero amounts.

Therefore, these fee amounts can get stuck in the vault contracts rather than being returned to the
user or sent to any fee receiver.

Recommendation

Consider adding validation such that a nonzero fee amount cannot be configured without assigning
the appropriate fee receiver to a nonzero address.

Resolution

Umami Team: Acknowledged.

50

Category Severity Location Status

Validation ● Low Global Acknowledged

VF-4 | Excessive GMX Withdrawal Fees

Description

GMX swap fees get calculated and subtracted from a user whenever they deposit/withdraw shares
from an asset vault. GMX fees in VaultFees.getWithdrawalFee() are calculated with the size's
backing in GM tokens based on their respective weights.

The PPS and TVL of a vault are calculated with the liquid reserves of the native token in the
aggregate vault, the GMI attributed to that vault, and also the opened external hedging position.

The issue here arises due to VaultFees:137 assuming that the whole withdrawal size is backed in
GMI tokens and calculating it accordingly. This makes users get charged a GMX fee on 100% of their
withdrawal size instead of only the fraction that needs to be liquidated through GMX, thus making
the users lose funds due to the excessive fees.

Recommendation

Consider calculating the GM market token amounts based on a fraction of size that corresponds to
the current fraction of GMI reserves / TVL.

Resolution

Umami Team: This is intended. We charge the fee for the entire withdrawal as if it were coming from
GMI.

51

Category Severity Location Status

Logical Error ● Low VaultFees.sol 137 Acknowledged

PoC

https://github.com/GuardianAudits/UmamiPoCs/pull/8

PV-1 | Pausing Or Unpausing Spams Identical Events

Description

When calling the functions _pause or _unpause from the PausableVault contract, for each function
there will be between 1 and 3 identical events being emitted. This can cause confusion for any 3rd
party integrator.

● for the _pause function: minimum 1 Paused event and maximum 2 more from the
_pauseDeposit and _pauseWithdrawal function calls

● for the _unpause function: minimum 1 Unpaused event and maximum 2 more from the
_unpauseDeposit and _unpauseWithdrawal function calls

Recommendation

For both the _pause and _unpause functions, remove the default emitted event, and for each
pausing/unpausing event, either add an argument to identify if it was a deposit or withdrawal that
was paused/unpaused, or create 2 separate events e.g. PausedDeposits/PausedWithdrawals.

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

52

Category Severity Location Status

Improvement ● Low PausableVault.sol: 131-139, 148-156 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

AGV-4 | High Netting Threshold Can Block Rebalancing

Description

The nettedThreshold variable can be set by the configurator by calling the function setThresholds
from the AggregateVault vault to any value.

Setting it to over the maximum BPS will result in blocking all rebalances that opt to validate netting
due to an underflow operation in the NettingMath library at line 95.

Recommendation

Add a limit check for the _newNettedThreshold input in the setThresholds function so that it does
not surpass the maximum BPS.

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

53

Category Severity Location Status

Validation ● Low AggregateVault.sol: 470-476 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

RH-9 | Unused Callback Gas Not Refunded To User

Description

Users can perform a deposit/withdrawal request with a callback to an arbitrary contract upon the
completion of the request processing.

The issue arises because users are required to incur costs for the maximum gas amount they can
utilize in the callback, even if their callback necessitates only a fraction of that for execution.

However, the unutilized gas in this process is not refunded, ultimately leading users to lose the value
of any leftover gas in the callback.

Recommendation

Consider refunding the value of the gas units left at the gas price during the creation of the request.

Resolution

Umami Team: This is by design as the the keeper also has rebalance cost.

54

Category Severity Location Status

Logical Error ● Low RequestHandler.sol Acknowledged

AGV-5 | Epoch Delta Cleared Before Fees Are Calculated

Description

The rebalancing fee is calculated based on the total TVL that was managed at the start of the
current epoch. This fee is deducted when closing an epoch and, by calling the closeRebalancePeriod
function from the AggregateVault contract.

The fee is incorrectly calculated because, in the closeRebalancePeriod function call, the epoch delta
is cleared by a _resetEpochDeltas function call on line 221, before the actual fee collection is done
on line 237. This results in the overall fee being calculated on the ending epoch TVL instead of the
opening TVL.

A higher fee will be deducted if the epoch has more deposits and a lower fee will be deducted if the
epoch has more withdrawals.

The end user is unaware of the fee value until the end of the epoch which, depending on the value,
might have determined whether or not the user participated in the protocol during that epoch. Fee
predictability is needed for users of the protocol.

Recommendation

Reset the epoch delta after the fees have been collected.

Resolution

Umami Team: The issue was resolved in commit 8227df2.

55

Category Severity Location Status

Logical Error ● Low AggregateVault.sol: 220-221 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/8227df25a53496d18e0ce4a2ee742c19064e5a8b

AGV-6 | Stale Vault Index Allocation Used

Description

When closing the rebalance period, a validation is done so that the current vault holding ratio is
within the accepted upper and lower thresholds.

This validation is incorrect because it uses the index allocations that were saved when the
rebalancing period was opened, which are stale, instead of using the current index allocations
determined at the moment the rebalance is closing, and that are saved in the vaultIndexAllocation
variable.

Because of this, the vault ratio is always slightly incorrect since it calculates the vault index exposure
as a factor of the current vault holdings (vaultCumulativeHoldings) but compares it to the vault
holdings at the time when rebalancing was opened (vaultHoldings) in the function
vaultDeltaAdjustment from the NettingMath library.

This slight difference may lead to the vault ratio exceeding the threshold and resulting in an
execution revert. Or passing a ratio when it would exceed the threshold normally.

Recommendation

When closing the rebalance period, always use the current index allocation, not the stale one saved
when the rebalance period was opened.

Resolution

Umami Team: We only care about the total GMI in the vaults when validating the netting check.

56

Category Severity Location Status

Logical Error ● Low AggregateVault.sol:215,229 Acknowledged

AV-6 | ETH Not Returned On Request Cancelation

Description

When a user creates a request to either withdraw or deposit into Umami, they need to supply enough
ETH to cover the execution fee.

This is so that the Umami keepers have funds to execute the transaction. Users who made the
deposit or withdrawal can also cancel their request if it has not been executed yet.

The issue is that the ETH that the user supplied is not returned to the user. This is inconsistent
behavior as the user loses any ETH that they sent for a request that never got executed.

Recommendation

Consider returning the ETH to the user since the keeper never used it.

Resolution

Umami Team: We chose to keep the gas here.

57

Category Severity Location Status

Logical Error ● Low AssetVault.sol: 146 Acknowledged

AGV-7 | AggregateVault Can Be Completely Drained By Excessive Fees

Description

When the vault fees are set by calling the function setVaultFees from the AggregateVault contract,
there are no checks that do not surpass the equivalent of 100%.

A mistake by the configurator or a compromised configurator can set the fees to such a value that
they equate the entire vault assets. When a rebalancing happens, the vault assets will be sent to the
fee recipient, which can also be set by the configurator via setFeeRecipient.

Recommendation

Add limitations so that fees cannot surpass 100% but should also include a lower, maximum allowed
threshold.

Resolution

Umami Team: Acknowledged.

58

Category Severity Location Status

Centralized Risk ● Low AggregateVault.sol: 415-425 Acknowledged

AGV-8 | Attacker can Prevent Closing of Rebalance

Description

For the closeRebalancePeriod function to successfully execute, it must pass the check in the
checkNettingConstraint function.

If the vault receives too little or too many GM tokens on a mint, it will cause the vaultIndexAllocation
to change and push the vaultRatio outside of its bounds.

An attacker can take advantage of this by force-sending some ETH or USDC to the GMX depositVault
while Umami is minting. This will cause Umami to receive more GM tokens than expected, which will
increase the vaultIndexAllocation and consequently the vaultRatio.

If the vault ratio is already near the upper bound, it would only take a small amount to push the
vaultRatio beyond the upper bound.

If the closeRebalancePeriod function cannot successfully execute, the protocol will remain in a
rebalance state for longer than intended.

Recommendation

This manipulation would be capital-intensive for an attacker and can be avoided by disabling the
netting validation. However, it would be prudent to be aware of this risk when setting targets that
would put the vaultRatio near the upper limit.

Resolution

Umami Team: Acknowledged.

59

Category Severity Location Status

Warning ● Low AggregateVault.sol: 213 Acknowledged

AGV-9 | Changing Fee Percentage Should Be Done After Rebalance

Description
Rebalancing the vaults results in a fee being paid in assets taken from the vaults themselves.
Settings of the rebalance fee percentages can be directly changed by calling the setVaultFees
function from the AggregateVault contract.

This is an issue, as changing the fee settings during an epoch alters the perceived risk that users
associate when interacting with the vaults, high taxes would also make the vaults less appealing and
in return would result in a lower utilization.

The epochDelta component as well as fee watermark PPS can be changed at any time by calling the
setAssetVaults function from the AggregateVault contract. Again this is an issue as it changes the
fee during an epoch.

Recommendation
When calling setVaultFees, have the new fee percentages be set in a pending state. When a
rebalancing is executed, after fees are deduced using the old fee values, then change them to the
pending ones.

Consider creating a separate function to update the fee watermark PPS value and date in the same
manner as described above.

The function setAssetVaults should only be called on severe vault changes, consider limiting its use
as much as possible.

Resolution
Umami Team: Acknowledged.

60

Category Severity Location Status

Logical Error ● Low AggregateVault.sol: 415-425 Acknowledged

AGV-10 | CLOSE_REBALANCE_HOOK Is Called Before Rebalance Gets Closed

Description

The protocol has two different types of hooks:

● Hooks calling arbitrary addresses passed by users after a request of theirs gets
executed/canceled.

● Protocol hooks that get evoked when a request gets queued or a rebalance gets
opened/closed.

CLOSE_REBALANCE_HOOK is called before deposits are unpaused, which may restrict the callback
from certain operations and limit its potential behavior.

Recommendation

Consider calling the protocol hook after the rebalance period gets closed similar to how it gets called
in openRebalancePeriod, just before the rebalance gets opened.

Resolution

Umami Team: Acknowledged.

61

Category Severity Location Status

Logical Error ● Low AggregateVault.sol Acknowledged

LCY-6 | Rebalance DoS With Empty Deposit Amounts

Description

Before depositing on GMX, the amount of asset vault native asset to expend to acquire the required
amount of GM is calculated: uint256 assetAmountRequired = _previewGmMint(markets[i],
gmSharesRequired[i], assetToMintFrom);

The assetAmountRequired can possibly be zero (post-internal netting), resulting in a GMX revert
upon deposit creation with EmptyDepositAmounts. Because the mints are done in a for-loop, a
failure in one market will cause all others to fail. Consequently, the cycle will fail and the necessary
GMI shares will not be minted.

Recommendation

Carefully select the weights and target allocations such that function _previewGmMint does not
return a zero amount.

Resolution

Umami Team: The issue was resolved in commit c07078c and 4467ccd.

62

Category Severity Location Status

DoS ● Low LibCycle.sol: 213 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/c07078c27c13fe4efb3e813ca27bc308e3f34d03
https://github.com/UmamiDAO/V3-Vaults/pull/36/commits/4467ccd33fe2891621bb4851ca0bd35715abf073

VF-5 | Precision Loss When Calculating Fees

Description

When calculating the performance and management fee, division occurs before multiplication,
leading to some precision loss, which makes the fee less than it should be.

Recommendation

Perform all division after all multiplication.

Resolution

Umami Team: Acknowledged.

63

Category Severity Location Status

Precision ● Low VaultFees.sol: 275, 284 Acknowledged

GLOBAL-3 | Redundant Code

Description

Both AggregateVaultHelper::_getVaultGmi and LibAggregateVaultUtils::getVaultGmi implement the
same functionality, with the only difference being how they fetch from storage.

Recommendation

Reuse the same functionality to avoid duplicative code.

Resolution

Umami Team: The issue was resolved in commit ea5e0e7.

64

Category Severity Location Status

Superfluous Code ● Low Global Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/https://github.com/GuardianAudits/UmamiPoCs/commit/ea5e0e7054ada0ee13d3c137d7fc5fd71c729c7473551d4b

LAVU-1 | Sum Of Vault’s GMI Less Than Total Supply

Description

It is possible for the sum of the two asset vaults’ GMI allocations to be less than the total supply of
GMI. As a result, a small portion of GMI is unaccounted for in the Asset Vaults which may lead to
issues such as needing to expend more asset funds to reach the target allocation.

Recommendation

Clearly document this precision loss.

Resolution

Umami Team: Acknowledged.

65

Category Severity Location Status

Precision ● Low LibAggregateVaultUtils.sol: 84 Acknowledged

AGVH-2 | TVL Not Equal To PPS Multiplied By Shares

Description

It is possible for the TVL Of a Vault != PPS * totalSupply because of precision loss when calculating
the price per share. This may lead to slight differences in the amounts withdrawn and the shares
received for a deposit, although this is preferable compared to having the PPS * totalSupply
potentially exceeding the TVL.

Recommendation

Clearly document this precision loss.

Resolution

Umami Team: The issue was resolved in commit b919f11.

66

Category Severity Location Status

Precision ● Low AggregateVaultHelper.sol: 89 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/b919f11571dcf4bf41b4fb2e00893bdfd57dbd22

RH-10 | Total Supply Does Not Increase After Deposit

Description

During a deposit it is checked that the shares to be minted is not 0: require((shares =
previewDeposit(assets)) != 0, "ZERO_SHARES");

However, it is still possible for a user to mint 0 shares with a non-zero deposit due to the precision
loss that occurs in uint256 shares = assetsSansFees * (10 ** decimals) / pps;
Consequently, a user may deposit a small amount of funds but receive 0 shares.

Recommendation

Consider enforcing a minimum deposit amount and/or validating the request upon execution.

Resolution

Umami Team: The issue was resolved in commit 54ada0e.

67

Category Severity Location Status

Precision ● Low RequestHandler.sol: 100 Resolved

https://github.com/GuardianAudits/UmamiPoCs/commit/54ada0ee13d3c137d7fc5fd71c729c7473551d4b

GVH-2 | Missing Minimum Output Amount On GMX Operations

Description

In both the mintGmTokens and burnGmTokens functions, a minimum output amount is set to 0. This
means that regardless of how many tokens are returned on a mint or burn, the execution will be
completed successfully.

However, this poses a problem as any amount lost will negatively affect the vault's TVL, which would,
in turn, impact the value of the users' shares.

Although some value loss is inevitable when making deposits or withdrawals on GMX v2,
precautions should be taken to limit how much value can be lost.

This is especially important considering that the price impact can take out an unexpected amount of
funds, and without a defined minimum output amount, price impact can remove a significant amount
of value from the mint or burn, leading to a loss of funds for the users.

Recommendation

Use a non-zero minimum output amount for both minting and burning to limit the users' loss.

Resolution

Umami Team: Acknowledged.

68

Category Severity Location Status

Logical Error ● Low GmxV2Handler.sol: 137, 201, 202 Acknowledged

LCY-7 | Unused Output Amount Leads to Skew

Description

In the rebalanceGmi function, if isOppositeDirection is true, it attempts to swap one token for the
other to rebalance before the minting and burning processes. This is achieved by swapping
whichever token is at a surplus for the other.

Any swap will experience slippage resulting in the output amount being different than the input
amount. The issue is that when updating the _current[] as well as calling the function
_commitGmiDeltaProportions for each of USDC and ETH, only internalNet is used.

This will lead to a skew in the accounting because the actual delta of the output token will be
different than that of the input token.

This skew will lead to the wrong amount being minted/burned as the cycle function continues, as
well as an undervaluing of whichever asset was the input token at the expense of the other token.

Recommendation

Change the state of the outputted token based on the returned output amount of the swap, instead
of the inputted amount. This will align the actual token balance proportions with what is stored in the
state, preventing misvaluing of assets and inaccurate minting/burning.

Resolution

Umami Team: We do this so the vault receiving the swap is responsible for all fees incurred from the
swap (slippage and trading fee).

69

Category Severity Location Status

Logical Error ● Low LibCycle.sol 385 Acknowledged

VF-6 | Management Fees Deducted Based On Performance

Description

When calculating the withdrawal fee, the management fee component is incorrectly deducted only if
the current vault price per share (PPS) is higher than the watermark PPS.

This condition is required for the performance fee, not for the management fee. This behavior is
inconsistent with the way the management fee is deducted when rebalancing and leads to fewer
fees for the protocol overall.

Recommendation

Calculate the management fee where there is a profit, regardless of the current vault price per share.

Resolution

Umami Team: We take the performance and management fee on regular intervals at rebalance time.
On withdrawal we only take them if there has been a profit since we last took them.

70

Category Severity Location Status

Logical Error ● Low VaultFees.sol: 267-290 Acknowledged

LCY-8 | State Does Not Unwind Properly On Failed Fulfillments

Description
When a rebalance occurs, and the protocol intends to mint GM tokens, it will deposit either WETH or
USDC into GMX via the mintGmTokens function.

After the deposit is created, the GMX Keeper will execute the order, and on completion, send the GM
tokens back to the Umami protocol. If the order is canceled or fails on execution for any reason, the
GMX keeper will return the long or short token to Umami.

Because the function _fulfilMintRequest will loop through all of the _mintRequest, if one did not
succeed then the whole transaction will revert due to the following require statement if
(!depositRequestDetails.success) revert RequestNotSucceded();.

Anytime the depositExecutionon GMX v2 fails or anytime an order is canceled, those funds will
require manual intervention. There are a variety of reasons both maliciously and unintended that can
cause an order to fail upon execution.

For example, the max deposit cap can be exceeded during execution and not creation, as well as
congestion on the network leading to the execution of the order taking place beyond the max block
limit.

Recommendation
Carefully monitor the status of a rebalance and fix state inconsistencies with handlers when
necessary.

Resolution
Umami Team: The keeper runs a simulation before sending all the transactions on chain but the
possibility of them still failing after simulations is always there because of the state changes on
chain between simulation block and rebalance block. If any of the requests fail it’d require manual
intervention.

71

Category Severity Location Status

Logical Error ● Low LibCycle.sol: 318 Acknowledged

RH-11 | Revert Bytes Gas Griefing

Description

In the afterDepositExecution and afterWithdrawalExecution functions in the catch block, arbitrary
bytes are loaded into memory from the arbitrary request callback.

Although the callback is limited in gas expenditure by the executionGasAmountCallback, the
arbitrary callback contract can cause the keeper to expend much more gas than expected by
reverting with a large amount of revert bytes which are then subsequently loaded into memory.

Memory expansion costs a quadratic amount of gas and malicious revert bytes can lead to the
keeper expending hundreds of thousands or even millions of additional unexpected gas units. Such
an expenditure can cost the keepers a significant amount over a period of time.

Recommendation

Do not accept revert bytes from the callback contract.

Resolution

Umami Team: The eth_call is going to fail and keeper will continue on with the next one without
actually sending any transaction and causing any loss of funds. The gas field for the transaction will
be set to the base gas units executionGasAmount + callback gas units
executionGasAmountCallback which will make it go OOG.

72

Category Severity Location Status

Gas Griefing ● Low RequestHandler.sol: 116, 128 Acknowledged

GLOBAL-4 | Lacking onlyDelegateCall Modifier

Description

There are several inconsistencies with contracts that have the functionality needed to be called on its own or
delegate-called into. Functions that work only when delegate called-into require the onlyDelegateCall
modifier will not return an invalid result when called into.

- For the GmxV2Handler contract:
- getDepositRequestDetails and getWithdrawRequestDetails need the onlyDelegateCall modifier

- For the VaultFees contract:
- getDepositFee, getVaultRebalanceFees, and getWithdrawalFee need the onlyDelegateCall modifier
- consider making the following public functions internal, since they are called only from within the
 contract and also work only when delegate-called into: _getVaultDepositFee, _getVaultWithdrawalFee,
 getVaultTVL, and getVaultPPS

- For the AggregateVaultHelper contract:
- getTotalNotional needs the onlyDelegateCall modifier
- all functions from the AggregateVaultViews contract require the onlyDelegateCall modifier but with
 the sole exception of vaultToAssetVaultIndex, all other functions the not used by the
 AggregateVaultHelper contract.

Recommendation

Add an onlyDelegateCall modifier to the mentioned functions and implement the other suggested changes.
Consider making vaultToAssetVaultIndex an internal function in the AggregateVaultHelper contract and
removing the AggregateVaultViews contract completely.

If AggregateVaultViews is to be kept for on-chain reading of values through multicall, the onlyDelegateCall
modifier must be added to all of its functions.

Resolution

Umami Team: Acknowledged.

73

Category Severity Location Status

Modifiers ● Low Global Acknowledged

Disclaimer
This report is not, nor should be considered, an “endorsement” or “disapproval” of any particular
project or team. This report is not, nor should be considered, an indication of the economics or value
of any “product” or “asset” created by any team or project that contracts Guardian to perform a
security assessment. This report does not provide any warranty or guarantee regarding the absolute
bug-free nature of the technology analyzed, nor do they provide any indication of the technologies
proprietors, business, business model or legal compliance.

This report should not be used in any way to make decisions around investment or involvement with
any particular project. This report in no way provides investment advice, nor should be leveraged as
investment advice of any sort. This report represents an extensive assessing process intending to
help our customers increase the quality of their code while reducing the high level of risk presented
by cryptographic tokens and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk. Guardian’s
position is that each company and individual are responsible for their own due diligence and
continuous security. Guardian’s goal is to help reduce the attack vectors and the high level of
variance associated with utilizing new and consistently changing technologies, and in no way claims
any guarantee of security or functionality of the technology we agree to analyze.

The assessment services provided by Guardian is subject to dependencies and under continuing
development. You agree that your access and/or use, including but not limited to any services,
reports, and materials, will be at your sole risk on an as-is, where-is, and as-available basis.
Cryptographic tokens are emergent technologies and carry with them high levels of technical risk
and uncertainty. The assessment reports could include false positives, false negatives, and other
unpredictable results. The services may access, and depend upon, multiple layers of third-parties.

Notice that smart contracts deployed on the blockchain are not resistant from internal/external
exploit. Notice that active smart contract owner privileges constitute an elevated impact to any
smart contract’s safety and security. Therefore, Guardian does not guarantee the explicit security of
the audited smart contract, regardless of the verdict.

74

About Guardian Audits

Founded in 2022 by DeFi experts, Guardian Audits is a leading audit firm in the DeFi smart contract
space. With every audit report, Guardian Audits upholds best-in-class security while achieving our
mission to relentlessly secure DeFi.

To learn more, visit https://guardianaudits.com

To view our audit portfolio, visit https://github.com/guardianaudits

To book an audit, message https://t.me/guardianaudits

75

https://guardianaudits.com/
https://github.com/guardianaudits
https://t.me/guardianaudits

