
SMART CONTRACT AUDIT

November 23rd, 2022 | v.	1.0

score

92

PASS
Zokyo Security has concluded that
this smart contract passes security
qualifications to be listed on digital
asset exchanges.

1

Umami DAO Smart Contract Audit

This document outlines the overall security of the Umami DAO smart contracts evaluated by
the Zokyo Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Umami DAO smart contract
codebase for quality, security, and correctness.

There were 3 critical issues found during the audit. (See Complete Analysis)

Contract Status

low Risk

Testable Code

97.9% of the code is testable, which is above the industry standard of 95%.

It should be noted that this audit is not an endorsement of the reliability or effectiveness of
the contract but rather limited to an assessment of the logic and implementation. In order to
ensure a secure contract that can withstand the Ethereum network’s fast-paced and rapidly
changing environment, we recommend that the Umami DAO team put in place a bug bounty
program to encourage further active analysis of the smart contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

#_y413rcm4r1gs

2

Umami DAO Smart Contract Audit

6Complete Analysis

5Structure​ ​and​ ​Organization​ ​of​ ​Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

23Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by Zokyo Secured team

. . .

3

Umami DAO Smart Contract Audit

The source code of the smart contract was taken from the Umami DAO repository:

https://github.com/UmamiDAO/auto-compounders

Last commit: fe23624efcd7b94e757be0d2f2d1f5e7b5af5e42

Auditing Strategy and Techniques Applied

. . .

Within the scope of this audit, Zokyo auditors have reviewed the following contract(s):

� MarinateStrategyFarm.so�
� MarinateAutoCompounders.sol

Zokyo Security has followed best practices and industry-standard techniques to verify the
implementation of Umami DAO smart contracts. To do so, the code was reviewed line by line
by our smart contract developers, who documented even minor issues as they were
discovered. A part of this work included writing a unit test suite using the Hardhat testing
framework. In summary, our strategies consisted mostly of manual collaboration between
multiple team members at each stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough manual review of the
codebase line by line.

During the audit, Zokyo Security ensured that the contract:

Implements and adheres to the existing standards appropriately and effectively;
The documentation and code comments match the logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices, efficiently using resources without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the most resent vulnerabilities;
Meets best practices in code readability, etc.

https://github.com/UmamiDAO/auto-compounders
https://github.com/UmamiDAO/auto-compounders/tree/fe23624efcd7b94e757be0d2f2d1f5e7b5af5e42

4

Umami DAO Smart Contract Audit

EXECUTIVE Summary

. . .

 The Zokyo team has conducted a security audit of the given codebase. The
contracts
provided for an audit are well written and structured. All the findings within the
auditing
process are presented in the “Complete Analysis” section.

 There were three critical issue found during the audit, alongside three with high
severity,
some of medium severity and a couple of informational issues . All the mentioned
findings
may have an effect only in case of specific conditions performed by the contract
owner and
the investors interacting with it.

5

Umami DAO Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost, allocated incorrectly,
or otherwise result in a significant loss.

Critical

For the ease of navigation, document’s sections are arranged from the most critical to the
least critical. Issues are tagged as “Resolved” or “Unresolved” depending on whether they have
been fixed or addressed. Acknowledged means that the issue was sent to the client team and
the client team are aware of it, but they have chosen to not solved it. The issues that are
tagged as “Verified” contain unclear or suspicious functionality that either needs further
explanation from the Customer or remains disregarded by the Customer. Furthermore, the
severity of each issue is written as assessed by the risk of exploitation or other unexpected or
unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​the Document

. . .

6

Umami DAO Smart Contract Audit

Complete​ ​Analysis

System overview

. . .

 The main use case of the contracts audited by the Zokyo team is to be an investment
platform for Umami/mUmami ecosystem. During the manual and testing stages of the
contracts audit, multiple security issues were found. All those can be found in the following
sections. Beside these findings, there are also remarks that have to be made about the overall
security of the contracts submitted for audit. Decision makers decided that one of the two
contracts being audited will not be deployed, hence all the issues related to that contract
became irrelevant and considered resolved.

 The contracts receive deposit from investors to be staked and action is taken by reinvesting
the deposits. The deposits can be invested on any tokens chosen by decision makers, and the
investment takes place within the marinate ecosystem. Rewards harvested from the
investment are distributed to the investors. During the initial assessment of the protocol, it
has been discovered that generic tokens being a deposit can cause critical faulty calculations
that lead to lost funds. But it is revealed by our partner that deposit tokens aren’t meant to be
arbitrary, for instance, the intention is assigned depositToken to be Umami and in this case
there are no miscalculations in the way described in following sections. Other highly severity
issues include absence of protection against slippage, which takes place during reinvestment
of deposits. The partner acknowledged the issue and stated that the related attacks are
mitigated by the choice to deploy the ecosystem on arbitrum. Despite that, the concern
remains in case unintentional unfavourable swaps still can take place, partner took the
responsibility to handle the reinvestment process wisely without being exposed to high
frequency price changes as the contract does not protect against those. Hence, Zokyo advises
the team to acknowledge the design decisions and take extra care while operating the
contracts in their current design.

7

Umami DAO Smart Contract Audit

Findings summary

. . .

#
 Title Risk

1

3

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Staking without owner’s agreement

Decimals mismatch

No slippage set

Method messes up reward collection

Lack of validation of address of beneficiary

Token residuals remain (non-withdrawable)

Token withdrawal is centralized

Centralization Risk

Unsafe casting

Method should be a view

Inefficient loop

Non-validated entry data on deployment

Argument in method might cause inconsistent router path

Method argument is not validated

Lock Solidity version

Storage used incurring unnecessary gas cost

Value recommended be constant

_depositToken arguments lack validation

Possible miscalculation mixing tokens

SCALE parameter messes up defi calculations

Critical

Critical

High

High

Medium

Medium

Medium

Medium

Low

Low

Low

Low

Low

Informational

Informational

Informational

Informational

Informational

2

4

Critical

High

8

Umami DAO Smart Contract Audit

. . .
#
 Title Risk

21

23

25

_deposit arguments lack validation

Modifier will block multisig

Not using SafeERC20

Method recommended not be public (limit access as needed)

Misinformation within incode documentation

Informational

Informational

Informational

22

24

Informational

Informational

9

Umami DAO Smart Contract Audit

. . .
Critical

Staking without owner’s agreement

MarinateStrategyFarm.sol - in body of stakeFor Can be misused by ANY caller (msg.sender) as
s/he can stake STOKEN for any user without other user's consent (ps. after approval). Despite
that it is not considered a loss as users are receiving something that they can redeem, but this
would lead to many upsets by users. Recommendation - Typical way of implementing
functions similar to stakeFor is to make the caller pay the deposit from his/her own tokens
while the beneficiary referred to by for is harvesting the stakes.

Fix-1: According to partner’s dev: `the Arbi’s emission strategy will no longer be used and
should be removed from scope, that includes the following file: MarinateStrategyFarm.sol.`.
Hence, issues in MarinateStrategyFarm.sol are no longer relevant.

Critical

Possible miscalculation mixing tokens

MarinateAutoCompounder - in body of _reinvest: totalDeposit refers to depositToken which is
different from toRedeposit that refers to UMAMI. This inconsistency leads to the presence of
non-withdrawable quantities, as shown in PoC test.

fix-1: I might not fully fathom the tokenomics of your project as much as you, hence my
description of the finding might not be very explanatory. Despite that though, this finding is
based on a proof of concept (poc) test in which the investor ends up having AutoCompounder
ERC20 that are not withdrawable because the underlying asset is zeroed.

let autoCompounder = ctx.ct.mockAutoCompounder;

// adminFee = reinvestFee = 0

await autoCompounder.setVariable("ADMIN_FEE_BIPS", 0);

await autoCompounder.setVariable("REINVEST_REWARD_BIPS", 0);

let rewardAmount = ether(10);

let umamiAmountSwapped = bitcoin(20); // 2e9

10

Umami DAO Smart Contract Audit

. . .
ctx.WETH.balanceOf.returns(0); // Smock balance of WETH

await depositToken.approve(autoCompounder.address, bitcoin(80));

// 8e9

await autoCompounder.deposit(bitcoin(80));

await ctx.ct.rewardToken.transfer(autoCompounder.address,

rewardAmount);

// smock UMAMI balance of AutoCompounder to emulate effect of

uniswap

ctx.ct.routerMock.exactInput.returns(umamiAmountSwapped);

await autoCompounder.reinvest();

// we have: totalDeposits = totalDeposits + umamiAmountSwapped =

1e11

expect(await

autoCompounder.totalDeposits()).to.be.eq(bitcoin(100));

expect(await

depositToken.balanceOf(autoCompounder.address)).to.be.eq(bitcoin(80));

expect(await autoCompounder.totalSupply()).to.be.eq(bitcoin(80));

// Withdraw all ERC20 of autoCompounder

// HENCE ISSUE totalDeposits > actual depositToken balance of

AutoCompounder

// Despite that totalSupply is 8e9 , we can only withdraw 6.4e9

await autoCompounder.withdraw(bitcoin(64));

// balance of depositToken is ZERO now

expect(await

depositToken.balanceOf(autoCompounder.address)).to.be.eq(bitcoin(0));

// Still there's totalySupply left that should be withdrawable

expect(await autoCompounder.totalSupply()).to.be.eq(bitcoin(16));

11

Umami DAO Smart Contract Audit

. . .
The test here does the following:

● Stake depositToken (deposit).

● Add rewards to autoCompounder.

● Reinvest: swapping rewards just added for depositToken and staking them in marinate.

● Withdraw: issue happens here as user won't be able to replace all his tokens for the

underlying asset.

Fix-2: According to dev team explanation, having depositToken asserted to refer to

mUmami matters a lot, hence this constraint shall be assured to be configured. This could

have been asserted in the way the contract is implemented, but if wiring the contracts

together goes the way it should, there shall be no issue anyway. Things become more

related to project tokenomics which is not the intention of a security audit.

totalDeposits = totalDeposits + toRedeposit;

both quantities totalDeposits & toRedeposit refer to mUMAMI. Given also that staked,

UMAMI gives the same amount staked in mUMAMI to staker. Therefore, as long as dev team

is aware and assuring the way the contracts are configured, the issue should be irrelevant.

Critical

Decimals mismatch

MarinateAutoCompounder.sol - in body of _deposit the amount minted is not
considering
the decimals of the depositToken. For example assume
depositToken initiated by
constructor is dai with 18 decimals, consequently the
amount minted
getSharesForDepositTokens(amount) will output amount
(i.e. since totalSupply =0),
considering that decimals of
 MarinateAutoCompounder is 9. This shall lead to lost funds in
subsequent calls
that are building on this.

Recommendation

This issue can be solved in several ways, one of them is to
restrict assig nment of
depositToken to tokens with decimals = 9. Or, preferably,
adjust amount according to the
ratios of decimals between
MarinateAutoCompounder and depositToken.

12

Umami DAO Smart Contract Audit

. . .
fix-1:

Issue is conditionally resolved since dev team stated that they will avoid utilizing any

decimals other than 9. If decimals for token used = 9, then the issue shall be irrelevant.

High

SCALE parameter messes up defi calculations

MarinateStrategyFarm.sol - Admin changing the value of SCALE after contract is
already
deployed and receiving rewards will mess up things recommendation—while
changing value
of SCALE, you need to rescale values of
totalTokenRewardsPerStake &
paidTokenRewardsPerStake.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm
at the moment.

High

No slippage set

MarinateAutoCompounder.sol - in body of
convertRewardTokensToDepositTokens,
putting amountOutMinimum:0 in
swaps will make this call susceptible to attacks that might
lead to unnecessary lost
funds for users.

fix-1:

Even though Arbitrum possesses a fair timing sequencer that protects from front

running. It is still risky to leave this line of code as no check on price while swapping leads

to a chance to lose assets to an accidental sudden price change without necessarily having

an attacker aiming to target that.

After discussing the issue with the team, it is established that changing the current state of

the contract is not possible. The team though reassured that work on a newer version in

which this issue is avoided by receiving oracle price update is ongoing. Finally, the risk is

acknowledged by both parties and work to encounter it is expected in a newer version.

13

Umami DAO Smart Contract Audit

. . .
High

Method messes up reward collection

MarinateStrategyFarm.sol - migrateToken transfers reward tokens to another
address and
does not update the value of totalTokenRewardsPerStake
accordingly, which shall in turn
cause loss of funds to some stakers trying to collect
rewards.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm

at the moment.

Medium

Lack of validation of address of beneficiary

MarinateStrategyFarm.sol - in body of stakeFor - user (the beneficiary of the
stake) is not
validated to be a non-zero address.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm

at the moment.

14

Umami DAO Smart Contract Audit

. . .
Medium

Token residuals remain (non-withdrawable)

MarinateStrategyFarm.sol - removeApprovedRewardToken
MarinateStrategyFarm still holds
balances of reward tokens after removal and can
not be dealt with using normal
circumstances.

Recommendation

better off having a require statement that validate
MarinateStrategyFarm does not have
balance of those assets before removing them
from their respective lists.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm
at the moment.

Medium

Token withdrawal is centralized

MarinateStrategyFarm.sol & MarinateAutoCompounder - migrateToken(), Too
much for
admin, might be lured into it if s/he is a single wallet having this kind of
control. Also, the
community might be concerned over this act of withdrawing funds.

Recommendation

add multisig

fix-1:

Partner stated that
The Umamo DAO Multisig is used as the only admin for our
deployment.
hence there's no centralization risk issue.

15

Umami DAO Smart Contract Audit

. . .
Medium

Centralization Risk

MarinateStrategyFarm.sol & MarinateAutoCompounder.sol - Admin enjoys too much

authority. The general theme of the repo is that admin has power to call several
functions like
adding/removing reward tokens , migrating/recovering tokens/eth,
general setters/mutators.
Some functions can be more highly severe to be left out
controlled by one wallet more than
other functions; depending on the intentions
behind the project.

Recommendation

Apply governance / use multisig wallets

fix-1:

Partner stated that
The Umamo DAO Multisig is used as the only admin for our
deployment.
hence there's no centralization risk issue.

low

Unsafe casting

MarinateStrategyFarm.sol - in body of stakeFor casting block.timestamp +

lockDuration to uint32 seems unsafe. This will take effect in about 84 years.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm
at the moment.

16

Umami DAO Smart Contract Audit

. . .
low

Method should be a view

checkReward better be a view function, that's based on info from priorly audited

MarinateV2 repo which contained
function getAvailableTokenRewards(address
staker, address
token) external view returns (uint256 totalRewards)
which is
a view function, hence all external & internal calls in the body of
checkReward are just views
no state changing gas-costing transaction is needed.

low

Inefficient loop

MarinateStrategyFarm.sol & MarinateAutoCompounder.sol -
removeApprovedRewardToken
& removeRewardToken - for loop might incur
too much computation that goes above limit if
list is too long. It can be avoided by
utilizing a better data structure for this purpose.

Recommendation

Checkout enumerables by openzeppelin
https://docs.openzeppelin.com/
contracts/3.x/api/utils#Enumera
bleSet

Fix

despite it is recommended to avoid loops as much as possible in
implementation given that
there is a way to use the mapping O(1) to avoid loop. We
acknowledge that the issue is very
unlikely to cause a blocker for this method.

17

Umami DAO Smart Contract Audit

. . .
low

Non-validated entry data on deployment

MarinateStrategyFarm.sol - in constructor - not verifying addresses STOKEN &

feeDestination to be non-zero and lockDuration is not validated to be within
valid
range

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm
at the moment.

low

Argument in method might cause inconsistent router path

MarinateAutoCompounder.sol - in body of addRewardToken, the argument
swapRouter can
pose a possibility of inconsistency arises as admin possibly
mistakenly add a route that is
inconsistent with rewardToken and Umami path.
Knowing that UMAMI should be the
tokenOut of the swap process, then
constructing the path in function body seems to be the
recommended way to do it.
This is deduced from the implementation of

convertRewardTokensToDepositTokens.

Recommendation

construct the route in function body rather than taking it as an

argument from admin.

18

Umami DAO Smart Contract Audit

. . .
Informational

Method argument is not validated

MarinateStrategyFarm.sol - addApprovedRewardToken argument is not validated
before
setting.

Recommendation

verify address is non-zero address.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm

at the moment.

Informational

Lock Solidity version

Both contracts, Lock the pragma to a specific version, since not all the EVM compiler
versions
support all the features, especially the latest one’s which are kind of beta
versions, So the
intended behavior written in code might not be executed as
expected. Locking the pragma
helps ensure that contracts do not accidentally get
deployed using, for example, the latest
compiler which may have higher risks of
undiscovered bugs.

Recommendation

fix version to 0.8.4

Fix:

According to partner’s dev: `the Arbi’s emission strategy will no longer be used and

should be removed from scope, that includes the following file: MarinateStrategyFarm.sol.`
MarinateAutoCompounder is locked to 0.8.4, hence it is
resolved.

19

Umami DAO Smart Contract Audit

. . .
Informational

Storage used incurring unnecessary gas cost

MarinateStrategyFarm.sol - Extra unnecessary storage

● stakedBalance carries redundant information in storage. Since

 farmerInfo[user].amount holds the same information.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm

at the moment.

Informational

Value recommended be constant

MarinateStrategyFarm.sol - BIPS_DIVISOR acts as a constant as it's not
changeable after
smart contract is deployed hence it is recommended to be
declared as a predefined constant.

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm
at the moment.

Informational

_depositToken arguments lack validation

MarinateAutoCompounder.sol - constructor - Addresses _depositToken,

_marinateContract & _router are not validated to be non-zero.

20

Umami DAO Smart Contract Audit

. . .
Informational

_deposit arguments lack validation

MarinateAutoCompounder.sol - in body of _deposit, amount not validated to be
non-zero
which leads to unnecessary computation going on if zero input is present.
Also, in the body of
setFeeDestination, new feeDestination is not validated
as non-zero address.

Informational

Method recommended not be public (limit access as needed)

MarinateAutoCompounder.sol - function setAllowances can be external rather
than
public, it is recommended as one of the best practices to limit function
access according to
the usage.

Informational

Modifier will block multisig

MarinateAutoCompounder.sol - in body of reinvest, modifier onlyEOA meant to
limit calls
to non-contract addresses by applying msg.sender == tx.origin,
but this will end up by
having no place for multisig calls.

21

Umami DAO Smart Contract Audit

. . .
Informational

Misinformation within incode documentation

MarinateStrategyFarm.sol - misguiding documentation of the function

setAllowEarlyUnlock(bool _earlyUnlock)
@param _earlyUnlock the duration
in seconds

_earlyUnlock is a bool not a number

Fix-1:

Partner informed us they ditched the development of MarinateStrategyFarm

at the moment.

Informational

Not using SafeERC20

MarinateStrategyFarm.sol & MarinateAutoCompounder.sol - throughout the
contracts, token
transfer is frequently executed in a require statement applied on the
return of the transfer
function called on the external token, one example:

require(IERC20(STOKEN).transfer(feeDestination, withdrawFee),

"withdraw fee transfer failed");

It is more preferred to use safeTransfer to using this pattern.

Fix

According to a discussion, we acknowledge the point of this implementation,
hence it shall not
become a blocker for the readiness of the contracts.

22

Umami DAO Smart Contract Audit

. . .

Access Management Hierarchy

Arithmetic Over/Under Flows

MarinateAutoCompounder MarinateStragegyFarm

Delegatecall

Hidden Malicious Code

Unchecked CALL Return
Values

External Contract Referencing

General Denial Of Service (DOS)

Floating Points and Precision

Signatures Replay

Pool Asset Security
(backdoors in the
underlying ERC-20)

Pass Pass

Pass Pass

Pass Fail

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Pass Pass

Re-entrancy

Unexpected Ether

Default Public Visibility

Entropy Illusion (Lack of Randomness)

Short Address/Parameter Attack

Race Conditions/Front Running

Uninitialized Storage Pointers

Tx.Origin Authentication

23

Umami DAO Smart Contract Audit

MarinateStrategyFarm
 addReward()

✓ It should revert if not approved reward token (63ms)
✓ It should set totalTokenRewardsPerStake correctly for 6 decimals (4855ms)
✓ It should set totalTokenRewardsPerStake correctly for 18 decimals (1097ms)
✓ small rewards (889ms)

 stake()
✓ should revert if amount is invalid
✓ it should set total staked to the correct value (48ms)
✓ Should create the Farmer struct with the correct values in farmerInfo (53ms)
✓ Should stake, add rewards then stake again for another user (1013ms)

 withdraw()
✓ Should revert if the timelock is not complete (66ms)
✓ should revert if the user has not deposited
✓ should collect and pay pending rewards to the user (1385ms)
✓ Should return the share tokens (96ms)
✓ Should set global variables to appropriate values (91ms)
✓ Should take the fee in the correct period (107ms)

 claimRewards()
✓ reverts if the user has no stake
✓ pays all rewards to the user

 recoverETH
✓ recoverETH (515ms)

 migrateToken
✓ migrateToken (524ms)

 setLockDuration()
✓ setLockDuration
✓ setFeePeriod
✓ setFeeDestination()
✓ setWithdrawalFee()

Tests written by Zokyo Security

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

As a part of our work assisting Umami DAO in verifying the correctness of their contract code,
our team was responsible for writing integration tests using the Hardhat testing framework.

The tests were based on the functionality of the code, as well as a review of the Umami DAO
contract requirements for details about issuance amounts and how the system handles these.

24

Umami DAO Smart Contract Audit

✓ setScale()
✓ setAllowEarlyUnlock()

 removeApprovedRewardToken()
✓ Should remove addApprovedRewardToken

 claimRewards()
✓ claimRewards

Autocompounder
 deposit

✓ deposit (188ms)
 recoverETH

✓ recoverETH (428ms)
 initialization

✓ intialization (914ms)
 migrateToken

✓ migrateToken (67ms)
 updateMinTokensToReinvest

✓ updateMinTokensToReinvest
 updateMinTokensToReinvest

✓ updateMinTokensToReinvest (1461ms)
 updateAdminFee

✓ updateAdminFee
 updateReinvestReward

✓ updateReinvestReward
 updateAdminFee

✓ updateAdminFee
 rewardTokensLength
BigNumber { value: "1" }

✓ ewardTokensLength
 decimals

✓ decimals
 setFeeDestination

✓ setFeeDestination
 rewardTokensLength

✓ Should withdraw the correct amount of mUMAMI after rewards have been
compounded over
time (24095ms)

39 passing (83s)

. . .

25

Umami DAO Smart Contract Audit

. . .

MarinateAutoCompo
under.sol

MarinateStrategyF
arm.sol

98,11

97.7

68,33

61.9

100

100

98.15

97.7

FILE % STMTS % BRANCH % FUNCS % LINES % UNCOVERED
LINES

All files 97.9 65.1 100 97.9

The resulting code coverage (i.e., the ratio of tests-to-code) is as follows:

We are grateful for the opportunity to work with the Umami
DAO team.

The statements made in this document should not be
interpreted as an investment or legal advice, nor should
its authors be held accountable for the decisions made
based on them.

Zokyo Security recommends the Umami DAO team put in
place a bug bounty program to encourage further analysis of
the smart contract by third parties.

