
SMART CONTRACT AUDIT

September 7th, 2022 | v.	1.0

Umami DAO

score

97

PASS
Zokyo’s Security Team has concluded
that this smart contract passes
security qualifications to be listed on
digital asset exchanges.

1

Umami DAO Smart Contract Audit

This document outlines the overall security of the Umami DAO smart contracts,
evaluated by
Zokyo's Blockchain Security team.

Technical​ ​Summary

The scope of this audit was to analyze and document the Umami DAO smart contract

codebase for quality, security, and correctness.

Contract Status

low Risk

Testable Code

The testable code is 99.05%, which is above the industry standard of 95%. (See Complete
Analysis)

There was 1 critical issue found during the audit. (See Complete Analysis)

It should be noted that this audit is not an endorsement of the reliability or effectiveness of

the contract, rather limited to an assessment of the logic and implementation. In order to

ensure a secure contract that’s able to withstand the Ethereum network’s fast-paced and

rapidly changing environment, we at Zokyo recommend that the Umami DAO team put in

place a bug bounty program to encourage further and active analysis of the smart
contract.

100%75%50%25%0%

your average

INDUSTRY STANDARD

. . .

2

Umami DAO Smart Contract Audit

6Complete Analysis

5Structure​ ​and​ ​Organization​ ​of​ ​the Document

4Executive Summary

3Auditing Strategy and Techniques Applied

Table of Contents

14Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files written by the Zokyo Security team

. . .

3

Umami DAO Smart Contract Audit

The Smart contract’s source code was taken from the Umami DAO repository.

Repository -
https://github.com/Arbi-s/marinateV2

Last commit -
2593b617b3aa956ff0ab39a15aa66e43d76a4960

Auditing Strategy and Techniques Applied

. . .

Contracts under the scope:

� MarinateReceiver.so�
� MarinateV2.so�
� ContractWhitelist.sol

Throughout the review process, Zokyo Security ensures that the contract:

Implements and adheres to existing Token standards appropriately and effectively;
Documentation and code comments match logic and behavior;
Distributes tokens in a manner that matches calculations;
Follows best practices inefficient use of gas, without unnecessary waste;
Uses methods safe from reentrance attacks;
Is not affected by the latest vulnerabilities;
Whether the code meets best practices in code readability, etc.

Zokyo’s Security Team has followed best practices and industry-standard techniques to verify
the implementation of Umami DAO smart contracts. To do so, the code is reviewed line-by-line
by our smart contract developers, documenting any issues as they are discovered. Part of this
work includes writing a unit test suite using the Tru􀀂 e testing framework. In summary, our
strategies consist largely of manual collaboration between multiple team members at each
stage of the review:

1
Due diligence in assessing the overall
code quality of the codebase.

2
Cross-comparison with other, similar
smart contracts by industry leaders.

3
Testing contract logic against common
and uncommon attack vectors.

4
Thorough manual review of the
codebase, line by line.

4

Umami DAO Smart Contract Audit

EXECUTIVE Summary

. . .

Contracts are well written and structured. There was one critical issue found during the audit,
alongside four with high severity, seven of medium severity and some issues with low severity
and information issues . They are described in detail in the “Complete Analysis” section.

All of them were successfully resolved by the Umami DAO team. The mentioned findings may
have an effect only in the case of specific conditions performed by the contract owner. Every
of the mentioned findings may have an effect only in case of specific conditions performed by
the contract owner and the investors interacting with it.

5

Umami DAO Smart Contract Audit

The issue has minimal impact on the
contract’s ability to operate.

Low

The issue has no impact on the contract’s
ability to operate.

Informational​

The issue affects the ability of the contract
to compile or operate in a significant way.

High

The issue affects the ability of the contract
to operate in a way that doesn’t significantly
hinder its behavior.

Medium

The issue affects the contract in such a way
that funds may be lost,
allocated incorrectly,
or otherwise result in a significant loss.

Critical

For ease of navigation, sections are arranged from most critical to least critical. Issues are

tagged “Resolved” or “Unresolved” depending on whether they have been fixed or

addressed. Furthermore, the severity of each issue is written as assessed by the risk of

exploitation or other unexpected or otherwise unsafe behavior:

Structure​ ​and​ ​Organization​ ​of​ ​Document

. . .

6

Umami DAO Smart Contract Audit

Complete​ ​Analysis

. . .

Critical

MarinateV2.sol - withdrawMultiplier & stakeMultipler , marinator stakes NFT with tokenId = x
while another marinator stakes tokenId = yof same NFT. The former marinator is able to
withdraw the tokenId=y. NFT tokenIds are not holding same value, therefore that leads to loss
of funds for some stakers.

Recommendation:
Keep track of token Ids of NFTs
fix#1 - Partner removed parts related to NFTs.

fix#1 - SCALEnow is immutable, setScaleis removed.

High

MarinateV2.sol - function setScale causes a flaw in the tokenomical model. SCALE value
affects quantities like totalTokenRewardsPerStake. Changing SCALE using setScale does not
update the quantities that were precalculated, hence this leads to a miscalculation when you
execute that line after changing SCALE to a new value

uint256 owedPerUnitStake = totalTokenRewardsPerStake[token] -
paidTokenRewardsPerStake[token][user];

uint256 totalRewards = (info.multipliedAmount * owedPerUnitStake) / SCALE;

This is limited to be called by admin though so as long as admin does not call it, issue is not
having an effect on the project.

Recommendation:
refer to the tokenomics of the project and recall what does SCALE value affect to update these
values when you’re setting SCALE to a new value in the body of this method.

7

Umami DAO Smart Contract Audit

. . .
High

High

MarinateV2.sol - the implementation of hooks _beforeTokenTransfer & _afterTokenTransfer
leads to issues in specific scenarios in which a marinator (i.e. contract holding mUMAMIs) is
being dropped out of the whitelist. The issue is described in the following scenario, shown
also in Proof of Concept (PoC) tests.

Contract A & B are both whitelisted, so they stake their UMAMI Contract A is no longer
whitelisted

Contract A sends the mUMAMI to B and in the process B collects rewards while A does not

Contract B unstakes all mUMAMI and collects rewards

MarinateV2 is possessing a quantity of uncollectible rewards

The rewards are never claimed for Contract A even if it comes back to the white list

Also in this context the totalMultipliedStaked does not hold the expected value proportional to
the totalSupply of MarinateV2 since the value it holds at the end of this scenario will actually
lead to unallocated funds when new rewards are added since totalTokenRewardsPerStakeis
not fairly distributed.

Recommendation:

declare a storage map for unallocatedRewards which going to receive rewards in this case
and allocate them to totalTokenRewardsPerStake.

fix#1 - Transfers now are only allowed when both parties are whitelisted. Also, rewards are
sent to the marinator before it is removed from whitelist.

MarinateV2.sol - migrateToken transfers reward tokens to another address and does not
update the value of totalTokenRewardsPerStake accordingly, which shall in turn cause loss of
funds to some stakers trying to collect rewards.

fix#1 - Partner removed migrateToken

8

Umami DAO Smart Contract Audit

. . .
High

Medium

ContractWhitelist.sol - unfortunately, the implementation of isContract can be surpassed by
an attacker as contract does not show up the containment of code during constructor call. In
the PoC tests, ImpersonatorFactory does just that: a factory of contracts (Impersonators) that
call stake(uint256) during constructor call to surpass the isEligibleSender guard.

Recommendation:

If the attacker could not be discovered during stake, s/he can be discovered in other
entrypoints like addToContractWhitelist or withdraw. In that sense, if a contract is discovered
to have staked tokens without being added to the whitelist (and not removed priorly by
admin) then the suitable measure might be taken to deincentivize that.

fix#1 - Resolve attempt done by partner but in a way that introduced a limitation on operation.
Investors cannot use Multisig. The Impersonator issue though is solved and this attack is
now mitigated.

ContractWhitelist.sol - isEligibleSender which is a modifier applied to limit access on stake is
now blocking multisig wallets due to tx.origin == msg.sender.

fix#2 - Partner made it clear that by design their intention is to be aware and whitelist
contracts including multisigs.

9

Umami DAO Smart Contract Audit

. . .
Medium

Medium

MarinateV2.sol - Regarding removeApprovedRewardToken,

require(IERC20(token).balanceOf(address(this)) == 0, "Reward token not completely claimed by
everyone yet"). New issue is introduced: having balance required to be strictly equal to zero
make it exposed to a scenario in which reward tokens with small uncollectible residues are
not possible to be removed. A scenario is reproduced in a Proof of Concept test.

Recommendation:

will be to adjust numbers, in terms of tokenomics of the project, in a way to deal with this or
make sure the last staker collecting reward is actually collecting everything by rounding up the
division in certain occasions rather than rounding down each time.

fix#2 - removeApprovedRewardToken(), the method has been removed

MarinateV2.sol - removeApprovedRewardToken & removeApprovedMultiplierToken,
MarinateV2 still holds balances of NFTs and reward tokens after removal and can not be dealt
with using normal circumstances.

Recommendation:

better off having a require statement that checks MarinateV2 does not have balance of those
assets before removing them from their respective lists.

fix#1 - NFT logic in the contract is already removed, hence removeApprovedMultiplierToken
issue is no longer relevant. Regarding removeApprovedRewardToken, partner added a check
on the reward token balance of the contract to ensure there are no residuals left:
require(IERC20(token).balanceOf(address(this)) == 0, "Reward token not completely claimed by
everyone yet"). Hence token will not be removed from list of reward tokens while there exist a
balance of it.

10

Umami DAO Smart Contract Audit

. . .
Medium

Medium

Medium

MarinateV2.sol - addApprovedMultiplierToken, setScale & setDepositLevel: new values are
not validated before setting. For instance, there's no upper nor lower limit for mulptiplierthat
is set in addApprovedMultiplierToken.

fix#1 - NFT logic and setScale are removed, hence first two issues are no longer relevant. body
of setDepositLimit is unchanged hence issue persists partially only for that case.

fix#2 - partner added a check on deposit limit

require(limit < IERC20(UMAMI).totalSupply(), "Deposit limit cannot be greater than
totalSupply");

MarinateReceiver.sol - onlyAdminguard applied on private function _addRewards. This
causes an issue for sendBalancesAsRewardsthat is supposed to be callable by admin and bots
(automation) as it will only make it callable by admin and block automation calls.

Recommendation:

no point of applying that guard in this context since the function is private already.

fix#1 - onlyAdminguard is removed.

MarinateV2.sol - migrateToken(), Too much for admin, might be lured into it if s/he is a single
wallet having this kind of control. Also, the community might be concerned over this act of
withdrawing funds.

Recommendation:

add multisig

fix#1 - function is removed

11

Umami DAO Smart Contract Audit

. . .
LOW

LOW

MarinateV2.sol & MarinateReciever.sol - unchecked return values:

● MarinateV2.constructor : rewardTokens.add(_UMAMI)

● MarinateV2.addApprovedRewardToken: rewardTokens.add(token)

● MarinateV2.removeApprovedRewardToken: rewardTokens.remove(token)

● MarinateReceiver.addDistributedToken: distributedTokens.add(token)

● MarinateReceiver.removeDistributedToken: distributedTokens.remove(token)

Recommendation:

wrap in require statements

MarinateV2.sol & MarinateReciever.sol - removeApprovedRewardToken,
removeApprovedMultiplierToken & removeDistributedToken - for loop might incur too much
computation that goes above limit if list is too long. It can be avoided by utilizing a better data
structure for this purpose.

Recommendation:

Checkout enumerables by openzeppelin

https://docs.openzeppelin.com/contracts/3.x/api/utils#EnumerableSet

fix#1 - NFT logic is omitted, hence removeApprovedMultiplierTokenissue is no longer relevant.
Regarding the other two functions, partner utilized the enumerables in the contracts.

12

Umami DAO Smart Contract Audit

. . .
Informational

Informational

ALL contracts, Lock the pragma to a specific version, since not all the EVM compiler versions
support all the features, especially the latest one’s which are kind of beta versions, So the
intended behavior written in code might not be executed as expected. Locking the pragma
helps ensure that contracts do not accidentally get deployed using, for example, the latest
compiler, which may have higher risks of undiscovered bugs.

Recommendation:

fix version to 0.8.4

fix#1 - solidity version is locked to 0.8.4 for the 3 contracts in scope

MarinateV2.sol - follow checks-effects-interactions pattern in implementation of
_stakeMultiplier.

Recommendation:

Watchout for the transfer nft interaction.

fix#1 - since NFT logic is omitted, this issue is no longer relevant.

13

Umami DAO Smart Contract Audit

. . .

Access Management Hierarchy

Arithmetic Over/Under Flows

MarinateV2.sol MarinateReceiver.sol

Delegatecall

Hidden Malicious Code

Unchecked CALL Return
Values

External Contract Referencing

General Denial Of Service (DOS)

Floating Points and Precision

Signatures Replay

Pool Asset Security
(backdoors in the
underlying ERC-20)

PassPassPassRe-entrancy

Unexpected Ether

Default Public Visibility

Entropy Illusion (Lack of Randomness)

Short Address/Parameter Attack

Race Conditions/Front Running

Uninitialized Storage Pointers

Tx.Origin Authentication

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

PassPass

ContractWhitelist.sol

14

Umami DAO Smart Contract Audit

As part of our work assisting Umami DAO in verifying the correctness of their contract
code,
our team was responsible for writing integration tests using the Truffle testing
framework.

Tests were based on the functionality of the code, as well as a review of the Umami DAO

contract requirements for details about issuance amounts and how the system handles
these.

Tests written by Zokyo Security team

Code​ ​Coverage​ ​and​ ​Test​ ​Results​ ​for​ ​all​ files

. . .

MarinateReceiver

 addDistributedToken()

✓ adds token to distributed tokens (636ms)
 removeDistributedToken()

✓ removes token from distributed tokens (282ms)
 setMarinateAddress

✓ setMarinateAddress (172ms)
 recoverToken

✓ recoverToken (170ms)
 recoverEth

✓ recoverEth (196ms)
 sendBalancesAsRewards

✓ sendBalancesAsRewards (1403ms)
MarinateV2

 Initialization

✓ Tests initialization variables (274ms)
 stake

✓ stakes umami tokens (485ms)
 addReward

✓ addReward (480ms)
 addApprovedRewardToken

✓ addApprovedRewardToken (166ms)
 removeApprovedRewardToken

✓ removeApprovedRewardToken (197ms)
 addApprovedMultiplierToken

✓ addApprovedMultiplierToken (345ms)
 removeApprovedMultiplierToken

✓ removeApprovedMultiplierToken (221ms)

15

Umami DAO Smart Contract Audit

. . .

setScale, setStakeEnabled, setMultiplierStakeEnabled, setStakingWithdrawEnabled
✓ toggles setScale, setStakeEnabled, setMultiplierStakeEnabled,
 setStakingWithdrawEnabled, depositLimit (272ms)

stakeMultiplier
✓ stakeMultiplier (744ms)

withdrawMultiplier
✓ withdrawMultiplier (309ms)

withdraw
✓ withdraw (517ms)

getAvailableTokenRewards
✓ getAvailableTokenRewards (280ms)

addToContractWhitelist
✓ addToContractWhitelist (514ms)

isContract()
✓ returns true/false if address is contract address or not (114ms)

 recoverEth()
✓ sends all ether balance within contract to admin caller (96ms)

 migrateToken()
✓ transfers token from contract to receipient (155ms)

transfer()
✓ transfer tokens and calls after token transfer hook (312ms)

getAvailableTokenRewards
✓ getAvailableTokenRewards (499ms)

claimRewards
✓ claimRewards (205ms)

25 passing (39s)

MarinateV2.sol

MarinateReceiver.sol

98.82 83.7 100 98.48

100 70 100 100

ContractWhitelist.sol 100 100100 80

FILE % STMTS % BRANCH % FUNCS % LINESFILE % STMTS % BRANCH % FUNCS % LINES

All files 99.05 99.0889.91 100

We are grateful to have been given the opportunity to work
with the Umami DAO team.

The statements made in this document should not be
interpreted as an investment or legal advice, nor should
its authors be held accountable for the decisions made
based on them.

Zokyo's Security Team recommends that the Umami DAO
team put in place a bug bounty
program to encourage further
analysis of the smart contract by third parties.

